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Abstract 

Operator-dependent instrument settings and the likelihood of image artifacts are two 

challenges for reliably using three-dimensional (3-D) power Doppler angiography in flow 

depiction and quantification applications.  

To address the operator-dependent settings challenge, an automated method for wall 

filter cut-off selection, the wall filter selection curve (WFSC) method, was developed using 

flow-phantom images. The flow-phantom WFSCs guided the development of a theoretical 

signal model relating color pixel density (CPD) and wall filter cut-off frequency. Simulations 

using the theoretical model were used to define criteria for the WFSC method to be applied 

to unprocessed power Doppler signals from 3-D vasculature. The adapted WFSC method 

was combined with a 3-D skeletonization and vessel network reconstruction method to 

present a two-stage processing method aimed at improving vascular detection, visualization 

and quantification. The two-stage method was evaluated using two in vivo models; a murine 

tumor model was used to test the performance of the method in a flow quantification 

application and a chick embryo chorioallantoic membrane (CAM) model was used to 

evaluate the method’s value for flow depiction applications. 

Applying the WFSC method to flow-phantom images improved vessel delineation 

and vascular quantification to within 3% of the vascular volume fraction of the phantom. 

Criteria for the WFSC method from the simulations were to assess at least 100 cut-off 

frequencies and that the CPD variability should be less than 5% to ensure quantification 

accuracy. Large variations in the cut-off frequency selected using the WFSC among images 

acquired at different time points and across different animals in the murine tumor model 

signified the relevance of spatially and temporally adjusting the cut-off frequency. The two-

stage method improved visualization of the vascular network and significantly reduced 

artifacts in both the tumor and CAM models in comparison to images using conventional 

Doppler processing. In the CAM model, vessel diameters measured in two-stage processed 

images were more accurate than measurements in images exported from a commercial 

scanner. The proposed signal processing methods increase accuracy and robustness of 
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qualitative and quantitative studies using 3-D power Doppler angiography to assess vascular 

networks for flow depiction and quantification. 

 

Keywords:  

Power Doppler ultrasound, microvascular imaging, quantitative angiography, preclinical 

imaging, cancer imaging, clutter filtering, three-dimensional vascular networks, 

vascularization index, vascularization flow index, power Doppler signal modelling, blooming 

artifact. 
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Chapter 1  
1 Introduction 
1.1 Overview 

Ultrasound is a commonly used imaging technique for vascular imaging. Of the 

different modes of ultrasound used to display vascular information, power Doppler is 

characterized by an improved sensitivity and ability to image small vessels or slow flow. 

However, power Doppler imaging faces some challenges that possibly set limitations on 

its usability in quantitative microvascular applications.   

This thesis presents and evaluates new Doppler signal processing methods to 

potentially overcome some challenges of using power Doppler imaging in vascular 

applications. In this thesis, an objective method to automatically select the wall filter cut-

off frequency setting is developed and evaluated using flow phantom experiments. 

Results from these experiments were used to drive adjustments to the theoretical 

foundation of the method and define conditions needed for an online implementation of 

the method. These conditions were used to adapt the method to apply to unprocessed 

power Doppler signals and expand it to function on three-dimensional images. The cut-

off selection method was combined with artifact-reduction image post-processing 

techniques to form a two-stage Doppler processing method. Lastly, in vivo evaluation of 

the two-stage method performance using a tumor model and a simpler, hierarchal 

vascular model of the chick embryo chorioallantoic membrane were performed. 

In order to provide some context for subsequent chapters, this chapter starts by 

highlighting the role of vascular imaging in many clinical applications and summarizing 

and comparing the commonly used vascular imaging techniques for these applications. 

With the focus of the thesis being power Doppler ultrasound, an overview of Doppler 

ultrasound imaging explaining some physical principals, imaging system components and 

operation and different display modes is included. A review of vascular depiction and 
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quantification applications of power Doppler imaging is presented followed by a 

summary of the most common challenges in using power Doppler imaging. Finally, an 

overview of previous attempts to overcome the identified challenges in comparison to the 

method presented in this thesis followed by a detailed outline of the thesis chapters. 

1.2 The Age of Vascular Imaging 
As quoted from Gooding’s 1999 editorial in Emergency Radiology, “the age of 

vascular imaging is upon us” [1]. With the vascular system being the fundamental 

communication and transportation vehicle to all body systems and organs, imaging blood 

vessels and studying its flow characteristics has become an integral part of almost all 

research efforts targeting the diagnosis, confirmation or interventional treatment of 

diseases. Vascular imaging is commonly used in cardiovascular, cerebrovascular and 

peripheral vascular diseases [2]. In the musculoskeletal field, vascular imaging has also 

become important for the diagnosis of inflamed entities that are linked to their vascular 

signature [3, 4]. In addition, studying tumor angiogenesis has become the focus of many 

researchers attempting to identify changes in vasculature as a marker of cancer and then 

target that vasculature for therapeutic defense [5, 6]. Vascular imaging is also playing an 

important role in testing the safety and efficacy of new drugs on the vascular systems of 

the target organs or hosts [1]. With the advancement in imaging technology, vascular 

imaging tools are now capable of providing three-dimensional (3-D) depictions of 

anatomical and/or functional features of vasculature. Furthermore, the unparalleled 

development in image analysis tools over the last three decades has empowered imaging 

technologies with artifact reduction, realistic visualization and quantification capability of 

vasculature.  

1.3 Vascular Imaging Techniques 
There are a number of different vascular imaging techniques that compete on 

achieving the balance between image quality, degree of invasiveness and cost. 

Commonly used vascular / angiographic imaging techniques include: 
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1.3.1 X-Ray Catheter Angiography 

Angiography is a term that describes the process of acquiring images of blood 

vessels, particularly, arteries and veins. X-ray catheter angiography was the mainstay of 

vascular diagnostic imaging for almost half a century with its excellent spatial and 

temporal resolution and selective delineation of vessels [4]. In x-ray angiography, images 

are acquired by transmitting and receiving x-rays through the area of interest after 

injecting the subject with radio-opaque contrast agent. Rotational angiography presents 

the 3-D extension of catheter angiography allowing it to compete with the alternative 

vascular imaging. X-ray angiography is very useful in detecting abnormalities of the 

vessel lumen: stenosis, occlusion, aneurysms and other irregularities [3]. Nevertheless, its 

invasive nature, high radiation doses and injection of possibly nephrotoxic contrast media 

are among its drawbacks [3]. 

1.3.2 Computed Tomography (CT) Angiography 

Computed tomography (CT) angiography allows 3-D imaging of vessels and 

surrounding structures. Cross sectional images are produced by rotating an x-ray tube 

360° around the area of interest and collecting the information using rows of detectors on 

a circular gantry [7]. These images are assembled by a computer and post-processing 

methods such as 3-D volume rendering and maximum intensity projection (MIP) maps 

are used to best demonstrate the acquired information. CT angiography is useful for 

detecting thrombus, vessel wall thickening, calcification and abnormalities of adjacent 

structures such as infarction and hemorrhage [3]. Although CT has the highest spatial 

resolution of all imaging modalities, its high radiation doses and the need for injections of 

high concentrations of nephrotoxic contrast media limits its use for repeated scanning.  

1.3.3 Magnetic Resonance Angiography (MRA)  

Magnetic resonance angiography (MRA) allows imaging of blood vessels in 

several body parts and provides information about the vessel lumen, vessel wall and 

surrounding structures, thus adding important anatomical information [3]. In general, MR 

imaging is performed by placing the subject in a strong uniform magnetic field to align 

the proton spins in the direction of the magnetic field, then collecting the varying signals 
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from protons within different tissues after being interrogated by a radio-frequency 

electromagnetic pulse. The advantages of MRA include having high soft-tissue 

discrimination, no ionizing radiation and safer low-toxicity contrast agents. However, 

MRA’s shortcomings include: prolonged acquisition time, being invasive, lack of 

information about direction of blood flow as well as some important exclusions [4]. 

Patients with pacemakers, metal implants, claustrophobia and first-trimester pregnant 

women are all not candidates for MRA. In addition, different practiced protocols and 

instrument preferences have a large effect on signal strength, making it difficult to 

compare data obtained from different instruments [6].  

1.3.4 Ultrasound 

Ultrasound is a medical imaging technique that uses the variations in transmission 

and reflection of super-audible range sound waves (i.e., sound waves with frequencies 

beyond the human audible range of 20 kHz) from different types of tissues to produce 

images [7]. In the last two decades, ultrasound experts have proceeded to introduce a new 

area of vascular imaging as instrumentation expanded from real time to duplex Doppler, 

then color Doppler to power Doppler [1]. With the ability to provide information on both 

anatomy and flow characteristics, being the least invasive, lack of ionizing radiation, low 

cost, broad diagnostic applicability, portability and easy handling, ultrasound has become 

the initial screening and the fast-look follow-up examinations tool [8]. Its high resolution 

and ability to visualize blood flow using power Doppler as well as blood velocity and 

direction using color Doppler further extended its application to vascular diagnosis. 

Challenges for ultrasound imaging include the dependence of the image quality on the 

skill of the operator, limited field of view, inability to image bony or air-filled structures, 

and the tradeoff between resolution and depth of penetration when selecting the imaging 

frequency since sound penetration is best at low frequencies whereas resolution increases 

with frequency [4]. Limitation and challenges of Doppler ultrasound vascular imaging 

techniques will be discussed in detail later.  

Contrast enhanced ultrasound (CEUS) is another ultrasound-based imaging 

technique that uses contrast agents, which are gas-filled microbubbles, to improve 

imaging of blood flow [8]. The highly echogenic microbubbles are injected into the 
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vasculature and remain in the systemic circulation for a certain amount of time. As these 

microbubbles pass the imaging window, they reflect echoes that differ signficantly in 

their frequency content from echoes reflected from the surrounding tissue. These 

reflected echoes are then converted into a contrast-enhanced image of the area of interest. 

Although CEUS imaging improves flow detection, it is still of limited use in comparison 

to Doppler flow imaging techniques due to its invasive nature and increased cost of 

contrast agents.  

1.4 Overview of Doppler Ultrasound Imaging 
1.4.1 The Doppler Equation 

Doppler ultrasound provides information about moving structures in the body by 

measuring the changes in frequency of an ultrasound wave as it is reflected from a 

moving target such as flowing blood [7]. This change in frequency is called the Doppler 

effect and is summarized in Figure1-1(a). 

When a target is moving towards the ultrasound source, the frequency of the 

received wave will be higher than the frequency of the emitted wave, giving a positive 

Doppler shift signal. A negative Doppler shift signal is acquired when the target is 

moving away from the ultrasound source. In vascular imaging applications, the Doppler 

shift frequency fDoppler is related to the velocity of blood v by the Doppler equation: 

    Eqn. 1-1 

where fr is the reflected ultrasound frequency, f0 is the ultrasound transmit frequency, v is 

the target velocity, theta θ is the angle between the ultrasound beam and the direction of 

flow as shown in Figure 1-1(b) and c is the average speed of sound in the imaged tissue.  

Typical ranges of the Doppler shift frequencies are 10Hz-10 kHz corresponding to blood 

velocities of 1-100 cms-1 [9]. 

 

! 

fDoppler = f r " f0 =
2 f0v cos#

c
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  (a)       (b) 

Figure 1-1: Doppler effect: (a) the frequency of the reflected ultrasound wave from 

a moving target (red blood cells (RBC)) is different than the transmitted wave. The 

detected frequency is increased or decreased depending on the direction of motion. 

The Doppler shift frequency is controlled by the Doppler equation (Eqn. 1-1) which 

is a function of the transmit frequency f0, RBCs velocity v, Doppler angle θ. 

1.4.2 Continuous-wave (CW) and pulsed-wave (PW) Doppler 

In general, Doppler systems for ultrasound-based flow estimation can be broadly 

categorized based on their excitation methods into: continuous-wave (CW) systems and 

the pulsed-wave (PW) systems [9]. The CW Doppler system is based on the use of 

continuous ultrasound waves, and it estimates flow velocities by measuring the Doppler 

frequency shifts between the transmitted wave and the received echoes. On the other 

hand, the PW Doppler system is based on the use of finite-duration ultrasound pulses, and 

it estimates flow velocities by measuring the time shifts between pulse echoes. In modern 

imaging instruments, pulsed-wave (PW) Doppler has virtually replaced CW Doppler as it 

allows more localization of the signal source within the field of view [9].  

The Doppler shift signal acquired from a pulsed wave (PW) Doppler system 

contains a wealth of information, which can be displayed in a few ways [7]. A spectral 

trace or spectrogram is a graph showing the time-varying flow velocity distribution 

derived from the measured Doppler frequencies [7]. This information is acquired from a 
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single sample volume in the field of view. The spectrogram is typically used to provide 

information about flow dynamics or blood velocity within a sample volume inside a 

blood vessel in coordination with the cardiac cycle. If multiple sample volumes are 

defined to fill out a field-of-view, and the locations of these sample volumes are mapped 

to a 2-D display using color-coded values in response to the amplitude or the frequency 

of the Doppler signal, blood flow images maybe produced [9]. Producing these types of 

2-D images of blood flow is called real time Doppler color flow imaging. 

1.4.3 Principles of Doppler Color Flow Imaging (CFI) 

A Doppler color flow imaging system can be divided into two stages: Doppler 

signal acquisition and Doppler signal processing. A sample block diagram illustrating the 

components of the two stages of a Doppler color flow imaging system is shown in Figure 

1-2. 

 

Figure 1-2: A sample block diagram of Doppler color flow imaging system 

constituting of 2 sections: (a) Doppler Signal acquisition section and (b) Doppler 

Signal Processing. 

1.4.3.1 Doppler Signal Acquisition  

A simplified layout of the Doppler signal acquisition stage is illustrated in Figure 

1-2(a). Almost all modern CFI systems use array transducers, where the transducer 

consists of a large number of piezoelectric elements to transmit and receive ultrasound 
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pulses. The master oscillator and pulser blocks control the combination and sequence of 

signals to the individual transducer elements to generate a suitable transmitted beam 

formed of multiple scan lines within the region-of-interest (ROI). For each scan line, 

corresponding to the lateral position within the ROI, the received beam is then amplified 

to compensate for attenuation of echoes returning from deep portions of the field of view. 

The mixer (quadrature demodulator) block is responsible for extracting the directional 

Doppler shift signals from the returning echoes. This is achieved by demodulating the 

returning signal with the transmit signal from the master oscillator (cos(wt)) and with a 

90° phase shifted version (sin(wt)) of the transmit signal. The demodulated signals are 

then sampled at time points that correspond to the different depths (axial position) of the 

sample volumes within the ROI whereas the lateral position of the sample volume is 

determined by its corresponding scan line within the ROI. For each sample volume, the 

ensemble of pulse echo samples referred to as the Doppler signal is determined for 

further processing. In the next sections, we discuss in detail some of the Doppler signal 

acquisition building blocks that directly contribute to the resulting images.  

Pulser Block: Velocity Resolution and Aliasing Limit 

The pulser block controls the number, N, and rate of pulses (i.e., pulse repetition 

frequency (PRF)) transmitted through each scan line. Within an individual sampling 

region, each pulse reflected from moving red blood cells represents a sample in the signal 

to be used to calculate the Doppler shift (referred to as ensemble in Figure 1-2). 

Therefore, the greater the number of pulses N, the more samples in the signal; leading to 

a more accurate estimate of the Doppler shift. The number of transmitted pulses N for 

each scan line is limited by the depth of the region of interest, the required number of 

scan lines to be acquired and the necessary frame rate to maintain the images to be 

updated in real time [10]. The minimum detectable velocity (i.e., velocity resolution), 

controlled by the pulser block, is inversely proportional to the period of the Doppler 

signal, which equals to the product of the number of pulses N and the interval between 

pulses (1/PRF). Therefore, decreasing PRF or increasing the number of pulses N can 

improve the velocity resolution (i.e., decrease vmin). Another performance measure 

determined by the pulser block is the maximum detectable velocity. As defined by the 
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Nyquist sampling theory, the rate of pulsing (the pulse repetition frequency (PRF)) must 

be greater than twice the maximum frequency shift to be detected (i.e., the Doppler shift 

corresponding to the maximum velocity of imaged blood flow) to avoid aliasing [10]. 

Aliasing is an inaccurate display of color that occurs in an image when the detected 

velocity in the corresponding sample volume exceeds the maximum detectable velocity 

[11]. Thus, the PRF setting on an ultrasound instrument affects the velocity resolution 

and sets the limit to the maximum accurately detectable blood velocity.  

Sampling Memory Block: Axial Resolution and Sampling  

In order to produce images with accurate estimates of the location of the source of a 

Doppler shift, a method known as range-gating is used. Range-gating is identifying a 

location along a scan line, the placement of which and the size determine the time 

instances for sampling of the received beams along that line to construct the Doppler 

signal for the location [12]. In color flow imaging (CFI) systems, this process is repeated 

for multiple gates to divide the ROI into sample volumes corresponding to samples of the 

received beams at different depths for the different scan lines within the ROI. Typically, 

the size of the gates is determined by the length of the transmitted pulse and defines the 

axial resolution in an ROI of CFI frame [12]. The Gate setting on an ultrasound 

instrument defines the size of the gates and thus the axial resolution of a CFI image.  

1.4.3.2 Doppler Signal Processing 

A simplified layout of the Doppler signal processing stage is illustrated in Figure 

1-2(b). Data from each sample volume, identified as the Doppler signal, is filtered to 

reject clutter components and processed to form estimates of the power and velocity of 

the source of the Doppler signal. The average power of each clutter-filtered Doppler 

signal is computed as the mean-squared value of the signal, whereas the velocity estimate 

is determined by computing the mean Doppler frequency of the filtered signal and 

inserting it into the Doppler equation Eqn. 1-1 to calculate the corresponding velocity of 

scatterers within the sample volume. The results from each sample volume are stored in a 

color frame memory in which each sample volume is positioned in its locations within 

the region of interest using its lateral and axial coordinates to form an image. The color 
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frame image is then combined with the B-mode gray-scale information from the sample 

volume in the artifact suppression block to determine the probability that flow is present 

and accordingly, determine whether the corresponding pixel will be displayed as a 

colored or gray-scale pixel. Finally, depending on which display mode is used, the 

resulting Doppler color map is superimposed onto a B-mode image of the underlying 

structure. In the next sections, we discuss some of the Doppler signal processing building 

blocks in detail. 

Wall / Clutter Filter Block 

The Doppler signal acquired from a sample volume may constitute a range of 

frequencies (frequency spectrum) corresponding to the potentially different velocities of 

the moving targets within the sample volume [9]. Since any blood vessel is generally 

surrounded by other scattering sources like tissues and vessel walls, the Doppler signal 

may also contain undesired components corresponding to such non-blood scatterers. A 

“hypothetical” Doppler signal spectrum obtained from a sample volume including 

flowing blood is shown in Figure 1-3 [13]. The distribution centered at 0 Hz, “clutter”, 

corresponds to the signal coming back from slow-moving tissue, vessel wall motion or 

external mechanical vibrations. These sources of motion are characterized by being 

strong but significantly slower than blood flow resulting in the clutter signal having a 

high amplitude and a low frequency as shown in Figure 1-3. The range of frequencies 

(velocities) of red blood cells in the sample volume is represented by the “blood” 

distribution. A high-pass filter, called the wall or clutter filter, is typically applied to the 

Doppler signal to eliminate the clutter spectrum. The cut-off frequency of that filter 

defines the line within the Doppler signal spectrum that differentiates the clutter signal to 

be eliminated from the blood signal as shown in Figure 1-3(a). In the case of the blood 

and clutter distributions overlapping, the selection of the wall filter cut-off frequency 

becomes more challenging as illustrated in Figure 1-3(b). Selecting a low cut-off 

frequency would allow the detection of slow blood flow but would falsely include clutter 

signal, whereas selecting a high cut-off frequency would achieve sufficient clutter 

removal but would cause the loss of the signal from slow-moving blood. In a typical 
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Doppler imaging instrument, the selection of the filter’s cut-off frequency is 

accomplished by the operator using the wall/clutter filter setting. 

 

Figure 1-3: Illustration of hypothetical Doppler signal frequency spectrum. A high-

pass filter, the wall/clutter filter, is used to suppress the high-energy, low-frequency 

clutter in the Doppler signal. Determining the filter cut-off can be (a) simple or (b) 

challenging if the clutter and blood spectra overlap. 

Artifact Suppression Algorithms Block 

With its stochastic nature, Doppler signal parameters may vary in a random 

fashion and therefore require some post-processing techniques such as spatial and 

temporal averaging and thresholding to reduce sharp fluctuations and signal dropouts in 

the final displayed image. The following are some of these techniques: 

Noise Threshold 

The purpose of the noise threshold is to eliminate the signal coming back from the 

noise spectrum (shown in Figure 1-3). If the estimate of average Doppler signal power is 

less than a minimum threshold level, the color pixel is not displayed. The exact value of 

the noise threshold is not controlled by the user but is a function of the gain setting [9].  

Priority Setting 

Despite applying clutter filtering and noise thresholding to Doppler signals within 

an ROI, some artifactual signals may still be displayed as blood [9]. For example, signals 

from highly echogenic solid structures that are characterized by very large amplitude 
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gray-scale echoes may be displayed as colored pixels and misinterpreted as blood in a 

color flow image. To suppress such signals from the image, the priority threshold, 

controlled by the priority instrument setting determines the maximum level of gray-scale 

intensity that would be displayed as color. If a pixel gray-scale value exceeds the priority 

level, it is likely to have come from a region containing solid tissue and therefore would 

not be assigned color.  

1.4.3.3 Display Modes 

The Doppler shift signals computed from the different sample volumes within a 

region of interest are used to produce two- or three-dimensional images of blood flow. 

There are two commonly used modes of display of color flow images: 

Color Doppler Mode  

A color Doppler image is a map of the mean Doppler frequency (corresponding to 

the mean flow velocity) computed from the phase shift or the delays between the echoes 

returning from the sample volume during subsequent pulses [12]. The mean frequency is 

computed for multiple sample volumes throughout the ROI and a color is assigned to 

each pixel depending on the speed and direction of flow. Blood flowing towards the 

transducer is typically mapped in blue color whereas blood flowing away from the 

transducer is assigned a red color. The pixel intensity displayed as the shade within the 

color scale represents the speed of the flow. An example of this type of display is 

illustrated in Figure 1-4(a). 

One of the shortcomings of color Doppler imaging is its susceptibility to aliasing 

artifacts. The inaccurate display of color due to aliasing occurs when the detected 

velocity in the sample volume exceeds the maximum detectable velocity defined by the 

PRF setting [11]. If a higher PRF is used to avoid aliasing, the system becomes less 

sensitive to slow flow. Another major limiting factor for color Doppler is the inherent 

tendency for noise to overwhelm its signal if the gain is too high or the threshold is too 

low [14]. With its wide frequency range and random phase shift (as represented by the 

“noise” distribution in Figure 1-3), noise can appear as flow of any speed and direction. If 

these signals were of an amplitude above the noise threshold used in the system, they 
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would obscure the vascular signals coming from slow flow [15]. Color Doppler images 

are also angle dependant, by which in the worst case, flow perpendicular to the 

ultrasound beam would not be detected or displayed as there will be equal flow towards 

and away from the transducer resulting in zero mean velocity.   

Power Doppler (PD) Mode 

The power Doppler mode is an alternative mode to color Doppler mode that 

produces two- or three-dimensional color maps of the total power of the Doppler signal 

within each sample volume instead of the mean Doppler frequency [16]. An example of a 

power Doppler image is shown in Figure 1-4(b). The estimate of the Doppler signal 

power is computed using the area under the signal’s power spectrum and is related to the 

red blood cell density in the sample volume. Power Doppler mode has several advantages 

over color Doppler. First, power Doppler signal is independent of flow velocity and 

direction, since the area under the spectrum is not affected by the wrapping of signal 

frequencies when Nyquist sampling is not met (i.e., flow faster than twice the PRF is 

imaged) and thus is not subject to aliasing. In addition, power Doppler has an improved 

sensitivity to slow flow and a higher tolerance to noise since the power of signal from 

slow flow, when integrated with respect to frequency, is relatively higher than the noise 

power and, therefore, its signal can be maintained after applying the noise threshold. 

Since velocity information is not of interest in this mode, power Doppler is nearly angle 

independent, allowing it to detect and display even blood flowing perpendicular to the 

ultrasound beam. When comparing the color and power Doppler images of a kidney 

(Figure 1-4), it is clear that the power Doppler mode is able to depict the full cortical 

perfusion network, while color Doppler displays the large vessels only. 

1.5 Power Doppler Imaging Applications 
With these advantages of power Doppler ultrasound, it has rapidly earned its position as a 

tool to evaluate and quantify vascularity and perfusion in a wide variety of applications. 

These applications can be broadly divided into vascular depiction applications that 

depend on the improved sensitivity of power Doppler and vascular quantification 
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applications that use these depicted vascular networks to quantify blood flow in the area 

of interest. 

 

Figure 1-4: Sample Doppler color flow images of human right kidney using (a) color 

Doppler display mode showing only large vessels and (b) power Doppler mode with 

higher sensitivity showing the full cortical perfusion network [Downloaded from 

Power Doppler Sonography, GE Healthcare, Medical Diagnostics: 

Medcyclopaedia.com according to the term of use attached in Appendix A]. 

1.5.1 Vascular Depiction Applications 

1.5.1.1 Vessel Morphology Depiction Applications 

Firstly, power Doppler (PD) has been used in depiction of vessel morphology 

depending on its improved ability to display continuous vessel segments and better define 

edges of vascular structures [17]. The ability to display continuous flow has been 

particularly useful when studying a number of organs and systems, including: evaluating 

the anatomy of orbital arteries [18], differentiating normal and abnormal fetal anatomical 

structures [19], studying vascularity of intestinal structures related to Crohn’s disease 

[20], and in screening thyroid nodules at high risk of malignancy [21]. Another 

application that has benefited from the improved ability of PD to depict small flow 

vessels that are possibly running in unfavorable angles to the Doppler beams is 

transcranial imaging. PD was used to detect and analyze intracranial aneurisms [22-24], 

imaging small-caliber, low-flow vessels [25, 26] and evaluating morphological and 

hemodynamic information in patients with severe head injury [27]. In large arteries, 
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power Doppler’s improved definition of vessel edges enhance the accuracy of luminal 

and vessel diameters measurements used in diagnosing high-grade stentosis in the renal 

artery [28] and the carotid artery [29-33].  

1.5.1.2 Inflammation Evaluation Applications 

The second application is using power Doppler to image and evaluate 

inflammation specifically in the musculoskeletal tissues [34, 35]. Due to its enhanced 

sensitivity, PD is valuable in depicting increased flow in vessels that are dilated owing to 

inflammatory response such as the intra-articular knee vasculature in rheumatoid arthritis 

patients [36-39]. In addition, PD can be used to distinguish inflammatory and infectious 

musculoskeletal fluid collections from those that are noninflammatory and may help 

guide the decision to perform diagnostic biopsy procedure [40]. 

1.5.1.3 Tumor Vasculature Depiction Applications 

The combined effect of power Doppler’s sensitivity to slow flow and improved 

delineation of tortuous and irregular vessels makes it a promising technique to image 

intratumoral vessels [17]. Studies assessing vasculature of hepatocarcinoma [41, 42] and 

analyzing the lymph node involvement and vascular invasion with breast cancer [43] 

have found power Doppler to be a very effective tool. Moreover, other investigators used 

power Doppler to differentiate benign and malignant tumors in breast [44, 45], ovarian 

[46] and adnexal lesions [47]. 

1.5.2 Vascular Quantification Applications 

Three-dimensional power Doppler became available for medical purposes 

towards the end of the last century [48, 49], giving rise to the possibility of extracting 

quantifiable objective measures describing full vasculature networks or trees in a volume 

of interest (VOI). A number of 3-D power Doppler quantification metrics were developed 

[13, 50, 51] based on the direct correlation of the power Doppler signal and the number 

or concentration of moving particles and their relation to fractional blood volumes and 

perfusion in the VOI. In 1999, while studying blood flow in adnexal masses; Pairleitner 
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et al. presented a standardized set of metrics that could give a mathematical expression of 

vascularization and flow [52]: 

 

 

Eqn. 1-2a 

Eqn. 1-2b 

Eqn. 1-2c 

 

As defined in [52], VI, also known as color pixel density (CPD), measures the 

proportion of color voxels in the cube, representing the amount of moving blood in the 

tissue, FI, the mean power signal of blood flow, represents the intensity of flow at the 

time of acquisition and VFI is a combination of vascularization and flow indices 

representing both blood flow and vascularization.  The software developed by Pairleitner 

et al. was later implemented in GE ultrasound scanners under the name VOCALTM: 

volumetric calculations.  

The use of these quantification indices and VOCALTM software, currently known 

as 3-D power Doppler angiography (3-D PDA), has produced an abundance of research 

communications in a variety of applications.  

Quantifying tumor vascularity is the primary application for 3-D power Doppler 

angiography, especially as it offers unique ways for assessing women with gynecological 

cancers [53] such as ovarian [54, 55]  and endometrial cancers [56, 57]and for diagnosis 

of malignant pelvic solid tumors [58]. Moreover, 3-D PDA was shown to serve as a 

useful tool in distinguishing benign and malignant breast [59, 60] and prostatic tumors 

[61].  

These quantification indices are progressively being applied to studying the feto-

placental unit. Attempts to correlate the VI, FI and VFI indices to regional perfusion in 

fetal brain [62, 63], liver [64] and lungs [65, 66] have been reported. The most promising 

field in applying 3-D PDA is the analysis of placental vascularity in different stages of 

normal pregnancy [67-71] as well as adverse pregnancy outcomes [72-75]. These indices 

€ 

Vascularization index =
color voxels

total voxels in VOI
,

Flow index =
sum of power in colored voxels

color voxels
,

Vascularization flow index =
sum of power in colored voxels

total voxels in VOI
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have also shown promising results when assessing the endometrium for assisted 

reproductive techniques and in vitro fertilization treatments [47, 76, 77]. 

1.6 Challenges in Power Doppler Imaging  
Despite this abundance of literature on the applications of power Doppler 

imaging, there exist a number of challenges and limitations that are consistently being 

highlighted in these studies.  

1.6.1 Operator-Dependant Instrument Settings  

The first and most commonly reported challenge is the sensitivity of the acquired 

power Doppler signal to numerous operator-dependent instrument settings. An example 

of a commercial ultrasound scanner user panel shown in Figure 1-5 illustrates that 16 

different instrument settings need to be setup prior to image acquisition in power Doppler 

mode, each of which has an effect on the amount of blood depicted in images. Some 

studies and opinion letters were published analyzing and discussing further the impact of 

these settings on power Doppler signal. In a letter to the Radiology editor, Cardinals et al. 

stated that machine settings such as PRF, filters, ensemble length, and transmit power can 

all contribute to false appearance of color from stationary structures in power mode [78]. 

Many studies were conducted to understand and evaluate how these settings influence 

flow information displayed by the power Doppler mode [79-84]. An increase in PRF and 

wall filter cut-off decreases flow areas significantly, whereas decreasing frame rate 

increases the flow area [79]. In accordance with these results, Gudmundsson et al. also 

reported that many instrument settings can influence power Doppler signal intensity and 

emphasized the need for optimum fixed presets of settings when attempting to measure 

flow from power Doppler images [80].  

1.6.1.1 The wall filter cut-off setting 

Due to its larger source of variability and effect on the amount of blood depicted 

in images, the wall-filter cut-off setting was one of the prevalent settings that received a 

lot of interest from researchers. Deverson et al. studied factors affecting the relationship 

between power signal and imaged vessel sizes and found the high-pass clutter filter to be 
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a source of a non-linearity between the two parameters [81]. Similarly, it was shown that 

the signal intensity of power Doppler images of flow is clearly affected by the clutter 

filter [82]. Browne et al. emphasized the importance of understanding the effect of 

instrument settings such as wall filter cut-off on the Doppler signal when interpreting the 

clinical significance of the Doppler information, particularly when evaluating serial 

examinations for changes in blood flow characteristics [84]. In a more recent study by 

Garcia et al., it was shown that the wall filter can induce severe power Doppler signal 

losses that could negatively influence assessment of vascular stenosis [85]. They 

recommended that clinicians should consider these signal losses when interpreting power 

Doppler images.  

1.6.1.2 Operator-dependant settings and 3-D PDA 

More specific studies and editorial notes on the effects of instrument settings on 

the quantification of the power Doppler signal using the three indices (VI, FI, and VFI) 

are also found in literature [86-90]. Due to the arbitrary nature of these indices and their 

dependence on the color pixel count, any factor that alter this count could affect the 

vascularity assessment. Instrument settings (gain, wall filter cut-off, pulse repetition 

frequency (PRF), and frame rate) play a major role in these alterations [86]. Therefore, 

the need for care with adjustments in instrument settings is important and, accordingly, 

more studies evaluating how these settings affect the quantification indices are required 

[87]. A study by Raine-Fenning et al. concluded that all three indices are affected 

significantly by variations in power Doppler instrument settings and recommended 

maintaining the settings in order to obtain meaningful comparisons within and between 

subjects [88]. It was also found that the degree of overestimation of moving blood 

volume in small tubes (vessels) depends on instrument settings and should be taken into 

account when quantifying small vessels in a clinical setting [90]. With the fast growing 

body of literature using 3-D PDA, W. P. Martins points out, in a note published in 

Ultrasound in Obstetrics and Gynecology, the necessity to formulate a proposal for 

standardized instrument settings to be used worldwide [91]. These standards would have 

to be developed in collaboration with the manufacturers and incorporated into machines 

to be available to the operators. Only then will researchers be able to establish normal 
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PDA indices reference values for different applications and test if pathologic conditions 

are related to abnormal 3-D PDA indices. 

 

 

Figure 1-5: An example of a commercial power Doppler system (Vevo2100, 

VisualSonics, Toronto, Canada) user panel having 16 user-dependent settings to be 

set prior to image acquisition. 

1.6.2 Image Artifacts 

The other major challenge for power Doppler vascular imaging is the presence of 

Doppler artifacts, which cause the misassignment of color to signal from sources other 

than blood flow [92]. A variety of Doppler artifacts have been documented in literature; 

however, we will be focusing on artifacts that specifically affect vascular imaging 

applications of power Doppler. These artifacts are: blooming, perivascular, flash, 

pseudoflow and jail-bar artifacts.  

1.6.2.1 Blooming and Perivascular Artifacts 

Blooming is commonly known as “color bleed” because the color spreads out 

from within the vessel and bleeds beyond the wall into adjacent areas [11]. An example 

of an image with blooming artifact is shown in Figure 1-6. Theoretically, it occurs due to 

multiple reflections or reverberations from the vessel wall, which are misinterpreted as 

reflections occurring further along the beam axis, making blood flow within the vessel to 
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appear outside the vessel [93]. In practice, the blooming artifact is directly related to the 

combined effect of the gain and color rejection (i.e. wall filter cut-off and priority) 

settings due to the tradeoff between having enough gain to visualize flow in small vessels 

and having so much gain that it causes an exaggerated depiction of larger vessels [93, 

94]. Excessive gain may also cause the overlap of signals from adjacent vessels, resulting 

in their appearance as a single vessel [94].  

 

Figure 1-6: Blooming artifact in a power Doppler image. Color “bleeds” (marked by 

white arrows) outside vessel boundaries (dashed green line) produced by manually 

segmenting vessels from B-mode image (lower image).  
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The perivascular artifact is essentially a blooming artifact that occurs in cases of 

turbulent flow, which causes tissue vibrations that result in a single hue of power around 

vessels and is a marker of stenotic vessel segments [95].  

Blooming and perivascular artifacts have been reported to cause overestimation of 

vessel diameters using power Doppler [31, 96-99].  

1.6.2.2 Flash and Pseudoflow Artifacts  

Flash artifact is a sudden burst of random color that fills the ROI and is caused by 

tissue or transducer motion and is most commonly seen in hypo-echoic areas such as 

cysts or fluid collections [92]. Flash artifacts are related to the priority instrument setting, 

which suppresses color pixels if a strong gray-scale echo is detected. In the case of hypo-

echoic areas, the absence of gray-scale echoes will cause color pixels to be displayed for 

nearly stationary regions [92]. Power Doppler is more susceptible to flash artifacts than 

other Doppler modes due to its increased sensitivity to motion [11]. 

Pseudoflow artifact is closely related to flash artifact in being dependant on 

motion, but it is specifically dependant on fluid (other than blood) motion [92]. The color 

or power Doppler signal will appear as long as the fluid motion continues, such as motion 

of fluid collection in the gastrointestinal or urinary systems. 

The presence of flash and pseudoflow artifacts was reported to significantly 

hamper visualization and quantification of vasculature and necessitated the repetition of 

scans to ensure enough artifact-free images are acquired for further analysis [19, 100, 

101]  

1.6.2.3 Jail Bar / Vertical Lines Artifact 

Jail bar artifact is a set of periodic colored vertical lines that are displayed across 

the full region of interest and is observed in power Doppler images [102]. An example of 

an image displaying jail bar artifact is shown in Figure 1-7. It is caused by an error in 

lateral interpolation while processing backscattered signals that approach the saturation 

level of the system. When the transducer is saturated by a very high-amplitude received 

signal, it appears to affect the efficiency of the pulse transmission of the following scan 
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line. Interpolation of the weaker than expected scan lines causes a lack of color, which 

appears as the striping effect. Martins et al. have reported observing artifactual vertical 

lines when imaging a flow-free water tank [91]. They associated these artifactual lines to 

strong reflections from the base of the tank (a nearly perfect reflector) and validated their 

assumption by placing a 2 cm layer of bovine muscle tissue at the bottom of the tank, 

causing the vertical lines to disappear. The artifact causes the loss of signal from some 

lines and an overlay of color on other lines, which significantly affect the quality of the 

image and is specifically problematic when imaging vasculature in a thin tissue layer 

placed on a strong reflector.  

 

Figure 1-7: Jail bar artifact in a power Doppler image. Vertical bars of color 

separated with blank lines are seen overlaying different structures in the image.  

1.6.2.4 Doppler Artifacts and 3-D PDA 

With all the above-mentioned artifacts affecting the amount of displayed colored 

pixels in power Doppler images, it is expected that any subsequent quantification of such 

artifactual Doppler information would result in false values of the 3-D PDA indices. The 
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over- or underestimation of these indices would present a limitation to their use in clinical 

settings or even by researchers attempting to use 3-D PDA to study different subjects or 

study longitudinal variations within the same subject [91].  

1.7 Attempts to Overcome Challenges 
1.7.1 Optimizing Instrument Settings using Flow Phantoms 

In an attempt to overcome some of the challenges of having operator-dependent 

instrument settings, some investigators performed in vitro studies using microvessel flow 

phantoms to better understand the effect of the different settings on images [91, 99, 103-

105]. Understanding the individual and combined effects of these settings on the acquired 

images provided these investigators with the opportunity to calibrate these settings for 

specific applications or formulate guidelines on how to set them up to acquire good 

quality images. For example Kruse et al. presented an optimized set of instrument 

settings and tested its reliability to locate and measure blood flow in nail bed of human 

finger [103]. Camfferman et al. was able to calibrate the instrument settings to improve 

imaging of preterm brain vessels [99], whereas Sakano et al. presented a means to 

optimize the PRF setting to calibrate different types of ultrasound machines and enable 

direct comparison of finger joint images between ultrasound machine models [105]. In a 

similar study comparing different machines, Ten Cate et al. reported the different sets of 

machine settings needed to detect the lowest flow velocity in a microvessel flow phantom 

[104]. 

1.7.2 Developing Application-Based Instrument Settings Standard 

Other investigators performed clinical studies to test and define a set of optimum 

settings for a specific application. Collins et al. investigated the feasibility of using the 

sub-noise gain level (a subject-based gain level determined by increasing the gain to the 

level at which obvious noise artifacts are present then slowly lowering it to a level just 

below this threshold) to quantify placenta vascularity using 3-D PDA indices [100]. This 

study showed that the sub-noise gain setting could be used to represent a patient-specific 

optimum gain level. Employing their expertise in using and analyzing Doppler flow 

imaging, some physicians and radiologists were able to formulate guidelines for 
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instrument setting optimization for specific applications, such as diagnosis of liver lesions 

[106]. Similarly, Kruskal et al. presented a comprehensive guide to setting up Doppler 

flow instrument settings for a number of different applications in hepatic sonography 

[83]. A comparable guide for optimizing machine settings and avoiding artifacts in 

rheumatological Doppler imaging applications was presented by Torp-Pedersen et al. 

[107].  

1.7.3 Optimizing Wall / Clutter Filter Processing 

While all the above mentioned studies did not attempt to improve or change how 

the Doppler imaging system performed, other investigators worked on improving the 

signal processing methods in Doppler imaging systems to overcome its limitations. As 

highlighted previously, the wall filter cut-off setting has been reported frequently to 

affect the quality and accuracy of blood flow display and quantification in Doppler flow 

images; therefore, many investigators have worked on developing more optimized filter 

designs or more advanced filtering approaches. Some investigators explored and 

analyzed different classes of filters (finite impulse response (FIR), infinite impulse 

response (IIR), and regression filters) [108] or different IIR filter initialization techniques 

to improve clutter filter performance [109]. Thomas and Hall proposed a “DC removal 

technique” that involves shifting the undesired clutter signals to zero frequency then 

removing these signals by subtracting their average from each of them. This technique 

results in a narrow band high pass filter without reducing the number of samples 

available for velocity estimation [110]. Further advancement of the wall filter involved 

the use of adaptive clutter filtering techniques [111-116]. In adaptive clutter filtering 

techniques, an optimum filter is dynamically selected at individual or multiple sample 

volumes by adapting its stopband or filter coefficients to the local clutter spectral 

characteristics.  

1.7.3.1 The Original WFSC Method 

A different approach of clutter filter tuning was proposed in our lab in 2009 [117] 

Based on the idea of power Doppler flow detection performance assessment presented by 

Zemp and Insana [118], receiver operator characteristic (ROC) curves for the quality of 
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clutter filtering were constructed from flow-phantom experiments using several single -

vessel flow phantoms of 160, 200, 250, 300 and 360 µm diameters, with blood-

mimicking fluid with flow velocity (4, 3, 2, 1 and 0.5 mm/s) imaged with different 

transducer frequencies (30 and 40 MHz). For the cases demonstrating high performance, 

the relationship between the amount of colored pixels in the ROI, represented by the 

color pixel density (CPD), and the wall filter cut-off frequency was represented by the 

wall filter selection curve (WFSC) [119]. A consistently identified characteristic plateau 

was recognized at intermediate cut-off frequencies along this curve, which was 

hypothesized to enclose the optimum cut-off frequency for that specific image. A 

mathematical model based on ROC statistics was developed to study the behavior of the 

wall filter selection curve for ROIs enclosing multiple vessels and were compared to 

experimental data acquired with a 30-MHz transducer and a custom-designed multiple-

vessel flow phantom with vessel sizes (200–300 um), blood flow velocities (1–10 mm/s), 

and different blood vessel orientations [120]. Monte Carlo simulations using the 

mathematical model helped analyze properties of the WFSC that yield accurate estimates 

of the optimum cut-off frequency for a specific image. These simulations showed that 

WFSCs for multiple-vessel regions include a plateau whose CPD corresponds to the total 

vascular volume fraction when the plateau is > 0.5mm/s in length and begins at a wall 

filter cutoff < 2mm/s. The WFSC method is proposed to automate the selection of the 

wall filter cut-off frequency setting without the need for any input from the user. Further 

development and evaluation of the WFSC method is presented later in this thesis.  

To our knowledge, there are no other similar methods to the WFSC method 

presented in the scientific literature; however, there are some automated wall filter cut-off 

setting techniques proposed in the patent literature. A summarized review of the methods 

published in the patent literature can be found in Chapter 2 of this thesis.  

1.7.4 Image Post-Processing Methods to Reduce Artifacts 

In cases when presence of Doppler artifacts was inevitable and only images with 

artifacts could be acquired and to be used to study or quantify vasculature, researchers 

have proposed some image processing algorithms to enhance power Doppler images 

prior to further processing. Hashimoto et al. developed a set of post-processing methods 
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including surface rendering, filtration, rotation and magnification to produce 3-D images 

suitable for a new 3-D view that allows the endoscopic view of flow such as arterial 

branches and curved vessels to be visualized [121]. Other investigators implemented 3-D 

vessel reconstruction algorithms to enhance the signal from small vessels and improve 

the continuity of big vessels, which may not be entirely perceived due to the signal loss 

from regions of low backscattered pressure within a vessel [122]. Another post-

processing algorithm proposed by Lai et al. involved applying thresholding, 

morphological transformations such as dilations and erosions and 3-D skeletonization and 

reconstruction of vascular networks to help extract diagnostic features from breast cancer 

vasculature [45]. Further information and development of this method is provided later in 

Chapter 4 of this thesis. Echoscintigraphy is a novel image-processing algorithm 

developed by Schlosser et al. in 2003  that provided reduction of color blooming in power 

Doppler images [123]. It improves the detection of low-intensity color signals by 

applying special summation algorithms to multiple frames and resulted in more accurate 

vessel diameter estimations.  

1.8 Hypothesis and Objectives 
We hypothesize that a more efficient power Doppler signal processing method 

that involves the automation of the wall filter cut-off instrument setting and post-

processing 3-D power Doppler images to reduce artifacts will improve the accuracy and 

robustness of vascular depiction and quantification using power Doppler imaging.  

Driven by the research hypothesis, the overall goal of this thesis study is to 

develop, evaluate and validate a new power Doppler data processor that uses an improved 

version of the wall filter selection curve method and 3-D vascular network reconstruction 

algorithms to produce more accurate representations of imaged vascular networks for 

depiction and quantification purposes.  

To achieve our overall research goal, this thesis study has been broken down into 

the following four specific objectives: 
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1) Design an improved, more fully automated version of the original WFSC method 

using image data from a multiple-vessel flow phantom such that the resulting image is the 

most accurate, artifact-reduced representation of the actual imaged vessels. 

2) Strengthen the theoretical foundation of the WFSC method by redesigning the 

mathematical model of the CPD-wall filter cut-off relationship and use it to guide the 

design of an online implementation of the method. 

3) Develop and evaluate, by comparison with contrast-enhanced ultrasound imaging, the 

effect of applying a two-stage power Doppler data processor (including the improved 

WFSC method and 3-D vascular network reconstruction method) for a power Doppler 

angiography (vascular quantification) application (Section 1.5.2) using a longitudinal 

study of a murine breast cancer xenograft model.  

4) Evaluate, by comparison with in vivo optical imaging, the effect of applying the two-

stage power Doppler data processor for a power Doppler vascular depiction application 

(Section 1.5.1) using the vascular networks of the chorioallantoic membrane (CAM) of 

chicken embryos.  

1.9 Thesis Outline 
This thesis presents and evaluates new signal processing methods for power 

Doppler microvascular depiction and quantification applications. Each of the four 

specific objectives is addressed in one of the chapters summarized below. Chapters 2 

through 5 represent work that is either published or in preparation for submission to a 

peer-reviewed journal and Chapter 6 includes concluding remarks and some future 

directions.  

 

Chapter 2 presents an improved implementation of the wall filter selection curve 

(WFSC) method that automatically detects characteristic intervals in a selection curve. A 

multiple-step decision algorithm that selects an operating point along the automatically 

detected characteristic intervals is presented. When applied to a power Doppler image, 
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the method divides a region of interest (ROI) into subregions to adapt the operating point 

cut-off velocity to local variations in vascularity. The method is validated by comparing 

the method’s vascular quantification metric color pixel density (CPD), to known vascular 

volume fraction estimate of a multiple-vessel flow phantom. The results are a promising 

indication of the potential to fully automate the wall-filter cut-off velocity setting in a 

power Doppler system using the WFSC method. 

Chapter 3 presents a new three-component mathematical model developed to 

guide the design of an online implementation of the improved WFSC method (Chapter 2) 

for in vivo imaging. The model treats Doppler imaging as a signal detection task in which 

the scanner must distinguish pixels inside, adjacent to and outside a vessel. The model 

includes a cost function developed to identify the optimum cut-off velocity that provides 

accurate vascular quantification and minimizes the effect of color pixel artifacts on 

visualization of vascular structures. Monte Carlo simulations using the new model were 

used to define WFSC curve characteristics (number of samples, upper bound on CPD 

variability and criteria for optimum cut-off selection) to ensure robust performance of the 

method and reliable vascular quantification accuracy. The model provides an intuitive, 

empirical description of the relationship between system settings and blood-flow 

detection performance in power Doppler imaging. 

Chapter 4 combines the improved WFSC method (Chapter 2) after adapting to 

three-dimensional (3-D) power Doppler images with a 3-D vascular network 

reconstruction method into a new two-stage Doppler processing method. The two-stage 

method is evaluated for improving 3-D power Doppler visualization and quantification 

using a murine breast cancer tumor model. The variations of WFSC-selected cut-off 

frequencies within a 3-D image and across time points in a longitudinal study are 

analyzed using histograms. Power Doppler angiography (PDA) indices, visualization 

index (VI), visualization flow index (VFI) and flow index (FI), were computed to 

evaluate the effect of individually applying or combining one or both stages of the 

method when quantifying the tumor vasculature. Contrast enhanced ultrasound (CEUS) 

images were acquired as a reference for vascular quantification. Results show that the 

proposed two-stage process presents increased accuracy and robustness to qualitative and 
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quantitative outcomes of studies using 3-D power Doppler angiography to assess 

complex, dense vascular networks.  

Chapter 5 evaluates the effect of processing power Doppler images of the simple 

vascular network in a chick embryo chorioallantoic membrane (CAM) using the two-

stage process developed in Chapter 4 as a vascular depiction application of 3-D power 

Doppler imaging. The processed images are compared to exported raw images from a 

commercial scanner using the optical images of the CAMs as a reference. The 

comparison between the Doppler processing methods (two-stage and commercial scanner 

software) is based on improvement in vessel detection, visualization, artifact reduction 

and accurate depiction of vessels for diameter measurement. Results indicate that the 

proposed Doppler processing method can potentially improve the usability of 3-D power 

Doppler imaging in vascular depiction applications such as assessment of vessel stenosis 

or studying vascular morphology to help in diagnosing pathology. 
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Chapter 2  
2 Improved objective selection of power Doppler 

wall-filter cut-off velocity for accurate 
vascular quantification 

 

The content of this chapter has been adapted from: "Improved objective selection 

of power Doppler wall-filter cut-off velocity for accurate vascular quantification," 

published in Ultrasound Med. Biol., vol. 38, p. 1429, 2012, by M. Elfarnawany, S. Z. 

Pinter, and J. C. Lacefield.  

 

2.1 Introduction  
Microvascular imaging is important in the study and development of treatments 

for cancer and other angiogenesis-dependent diseases such as psoriasis, endometriosis, 

and atherosclerosis [1, 2]. In angiogenesis studies, the hemodynamic parameters blood 

volume and blood flow are often quantified using imaging modalities such as dynamic 

contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic contrast-enhanced 

x-ray computed tomography (DCE-CT), and functional positron emission tomography 

(PET) [3]. In comparison to these modalities, power Doppler ultrasound, which is also 

sensitive to blood volume, is attractive for longitudinal studies because it does not require 

repeated injections of contrast media and avoids the exposure to ionizing radiation that 

accompanies DCE-CT and functional PET.   

However, the quantitative accuracy of power Doppler images depends on the skill 

and experience of the operator in selecting acquisition parameters such as gain, pulse 

repetition frequency, and wall filter cut-off velocity [4-6] . Doppler power is strongly 

correlated with the wall-filter cut-off velocity [7] and effective clutter filtering is 
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particularly difficult when imaging slow-moving blood [8]. When imaging small blood 

vessels with slow flow velocities, if the selected cut-off is too low, false-positive color 

pixels will result, whereas selecting a cut-off velocity that is too high leads to false-

negative artifacts and a possible loss of vessel continuity [5, 9], Furthermore, in 

longitudinal studies that involve serial measurements of vascularity, the Doppler settings 

are typically chosen in advance and fixed throughout the course of a study. Since 

angiogenic vasculature experiences changes in structure and function over time [10, 11], 

the optimal Doppler settings should also vary. However, if the Doppler settings were 

adjusted based on the operator's judgment, an unacceptable risk of experimenter bias 

would be introduced. To provide a reliable basis for adapting these parameters, we 

developed an objective method, the wall filter selection curve (WFSC), to select the wall 

filter cut-off velocity Pinter [12, 13]. The WFSC method could potentially be applied to 

tune other acquisition parameters as well. In this chapter, the WFSC method is 

redesigned to be more automated and to improve the accuracy of vascular quantification 

using power Doppler. 

Much of the recent progress toward automated selection of Doppler acquisition 

parameters can be found in the patent literature. Mo et al. introduced a method for 

adaptive wall filtering in spectral Doppler that uses a pre-constructed noise model to 

predict clutter power and select the most suitable filter cut-off accordingly [14]. They 

revised this method for color flow imaging as an iterative algorithm that compares the 

power and the mean frequency of a wall-filtered Doppler signal to predetermined 

thresholds to assess the suitability of the selected cut-off frequency [15, 16]Kim et al. 

proposed another iterative algorithm that defines the cut-off frequency as a function of 

the Doppler signal's mean frequency [16]. In this method, a set of metrics is computed for 

the pre- and post-wall-filtered data and those metrics are combined with fixed or user-

determined thresholds to evaluate the suitability of the cut-off frequency being tested. 

The above methods depend on predetermined values or predicted models, which are 

difficult to compile and standardize for different imaging applications or across different 

Doppler systems. In contrast, Lee et al. introduced a numerical optimization method for 

spectral Doppler that depends on information extracted from the measured data rather 

than predetermined values or relationships [17]. In their method, a feature of the data is 
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identified, such as the signal-to-noise ratio summed over a 2-D time and velocity window 

that depends strongly on the acquisition parameter to be tuned. The acquisition parameter 

is varied to search for the setting at which the data-dependent feature best corresponds to 

a goal value such as its maximum or average. The difficulty in applying the Lee et al. 

method to power Doppler is that specific image-based quantities and goal values would 

have to be defined for each parameter to be tuned and no guidance is provided that would 

enable these quantities and goals to be determined from Doppler image data.   

In our original WFSC method [12, 13], the wall-filter selection curve is 

constructed by plotting the color pixel density (CPD) as a function of the cut-off velocity 

of the wall filter, where the CPD is equal to the ratio of colored pixels to the total number 

of pixels in a region of interest (ROI). A mathematical model developed in [13] describes 

the relationship between power Doppler CPD and the wall filter cut-off velocity as a 

signal detection problem in which true-positive color pixels can occur within the vessel(s) 

and false-positive color pixels can occur in the tissue background. This relationship can 

be described for an ROI enclosing multiple vessels as:   

  Eqn. 2-1 

 

where vc is the wall filter cut-off velocity, TPFi (vc) is the true-positive fraction within the 

ith vessel and FPF(vc) is the false-positive fraction obtained as the cut-off velocity is 

varied, and Fv(i) is the volume fraction occupied by the ith vessel within the ROI. The 

mathematical model predicts that the WFSC will possess one or more characteristic 

plateaus as shown in Figure 2-1. We have shown in microcirculation-mimicking flow 

phantoms [12, 13] and in power Doppler images of testicles of two mice [12], that 

experimental selection curves do possess such plateaus. If a plateau satisfies specific 

criteria for its length and its position along the cut-off velocity axis, the CPD along the 

plateau yields an accurate estimate of the vascular volume fraction in the ROI. 
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Figure 2-1: Theoretical wall-filter selection curve (Eqn 2-1) for a region of interest 

containing two vessels. The horizontal bars identify the bounds of the two plateaus. 

The first plateau corresponds to cut-off velocities at which both vessels are filled 

with color pixels, whereas the second plateau corresponds to cut-off velocities where 

color pixels remain in the higher flow rate, more easily detected vessel only. 

 

Our previous studies also identified several opportunities to improve the 

performance of the WFSC method. First, analogous to the [14], [15, 16] methods, our 

original method identified plateaus in WFSCs by comparing the relative first difference 

in CPD to an empirically determined threshold. The value of this threshold differed for 

the flow-phantom and murine data and therefore was not universally applicable. Second, 

the detected plateaus were often non-stationary (i.e., non-zero slope), but the original 

method did not include a means of choosing an operating point along a plateau and 

instead always treated the right end of the plateau as the best choice of cut-off velocity. 

Third, in WFSCs for ROIs containing multiple vessels, the original method selected a 
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cut-off velocity that was most suitable for imaging the dominant vessel in the ROI, which 

in some cases compromised the display and quantification of the remaining vessels.   

In this chapter, we introduce a redesigned WFSC method that addresses these 

challenges. In the redesigned method, an N-point maximum envelope peak (MEP) search 

algorithm [18] is applied to detect characteristic intervals on the selection curves without 

the need to specify a predetermined threshold value. The slopes of the selection curve 

intervals detected by the redesigned algorithm were occasionally steeper than expected, 

so we hereafter refer to these features as “characteristic intervals” rather than “plateaus” 

to avoid the implication that the method relies on the existence of approximately 

horizontal segments in the WFSC. Since the characteristic intervals can be sloped, it is 

now even more necessary to identify a specific operating point along the WFSC. We 

therefore introduce a multiple-step decision algorithm that selects an operating point at 

either the right end or the center of the characteristic interval. Finally, the redesigned 

method subdivides the ROI into small subregions, selects an operating point cut-off 

velocity for each subregion, and reconstructs an image using the potentially different cut-

off velocities in each subregion. This approach tunes the cut-off velocity to more 

effectively depict different vessels, thereby preventing a dominant vessel from skewing 

the CPD estimate. (The general concept of subdividing the ROI was also suggested 

independently in a patent by Bakircioglu [19], but few details were provided in that 

patent about how the subdivision should be implemented.) In the following sections, the 

redesigned WFSC method is described in more detail and its improved performance is 

demonstrated by reprocessing four-vessel flow phantom images from [13]. The results 

are a promising indication of the potential to fully automate the wall filter cut-off velocity 

setting in a power Doppler system using the WFSC method.   

2.2 Materials and Methods 
2.2.1 Dividing an ROI into subregions 

The original ROI is divided into the smallest possible non-overlapping, 

rectangular subregions of equal dimensions. In this study, the entire Doppler color box is 

used as the original ROI, but the method could be applied to any region segmented by the 
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user. The original ROI is initially divided into a large number of rows and columns, for 

example 9 rows by 9 columns. The CPD is computed for each subregion using the lowest 

available cut-off velocity, which was typically 0.3 mm/s in this study. If no subregion 

yields a CPD > 0.80, the original ROI is repartitioned into smaller subregions. 

Repartitioning into equal numbers of rows and columns K × K) continues until at least 

one subregion possesses a CPD > 0.80. The final partition will consist of either (K-1) × 

(K-1), K × (K-1), or (K-1) × K rows and columns. Of these three options, the partition 

that yields the highest maximum CPD is chosen, subject to the constraint that the CPD 

must be < 0.80 in all subregions. The value of that threshold, 0.80, was selected 

empirically by experimentation with the flow phantom data. This approach is designed to 

ensure that most subregions containing flow have relatively high CPD, which prevents 

the algorithm from inappropriately interpreting a small number of false-positive color 

pixels as significant flow in regions with little actual vascularity. Conversely, if 

subregions containing more than 80% true-positive color pixels were allowed, the CPD 

would not vary sufficiently smoothly as a function of cut-off velocity to produce 

meaningful characteristic features in the WFSC for such subregions.   

2.2.2 Detection of characteristic intervals in a WFSC 

The variation of CPD along a WFSC is evaluated by computing the normalized 

absolute first difference of the CPD, |ΔCPD|norm:  

 

    Eqn. 2-2 

 

where CPD1 and CPD2 are the CPD values of two successive data points on the selection 

curve and max(CPD) is the maximum value of CPD along the WFSC. For purposes of 

visualization, |ΔCPD|norm is plotted as bars overlaying the WFSC, as illustrated in Figure 

2-2. Characteristic intervals of a WFSC are bounded at each end by prominent local 

maxima in |ΔCPD|norm. These prominent local maxima are detected by applying the N-

point maximum envelope peak (MEP) search [18]. 

! 

"CPD norm =
CPD2 #CPD1
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The MEP search detects local maxima in a low-pass filtered version of the 

envelope of the input data, which in this case is |ΔCPD|norm. In each iteration of the MEP 

search, an N-point window slides across the |ΔCPD|norm data in one-sample steps. In our 

implementation, the length of the window, N, is computed by dividing the total number 

of data points by five and rounding down to the nearest integer. Division by five is used 

because a WFSC that includes two characteristic intervals consists of five distinct 

segments, the two characteristic intervals plus the segments before, after, and between 

them. This approach yielded an initial window length between 3 and 5 points, which 

provided good performance with the flow-phantom data. At each window position, the 

relative maximum of |ΔCPD|norm, i.e., the maximum value of |ΔCPD|norm within the 

window, is identified. The result of this operation, which we refer to as the filtered 

envelope, is a sequence of distinct relative maxima in the |ΔCPD|norm data, such that if 

one |ΔCPD|norm sample is the relative maximum for multiple window positions, it only 

appears once in the filtered envelope. In the example shown in Figure 2-2, the filtered 

envelope produced by the first iteration of the MEP search is represented by the black 

line in Figure 2(b). 

Characteristic intervals are detected whenever three successive points in the 

filtered envelope form a V shape indicating an interval of high, low, and then high 

|ΔCPD|norm, as highlighted by the two sets of red crosses in Figure 2-2(b). Each V shape 

corresponds to a candidate characteristic interval whose location along the cut-off 

velocity axis is saved for further analysis. The filtered envelope obtained from the first 

iteration of the MEP search is used as input data to the second iteration of the search. In 

the example of Figure 2-2, the second iteration yields the filtered envelope shown in 

Figure 2-2(c) that contributes one more candidate characteristic interval. The process is 

repeated until the filtered envelope contains only three points. At each step of the 

iteration, the filtered envelope will have fewer samples, so the length of the N-point 

window is reduced in each step, subject to the constraint that N must be at least two 

samples. 

 



www.manaraa.com

 48 

 

Figure 2-2: Iterative detection of characteristic intervals. (a) A wall filter selection 

curve (WFSC), color pixel density (CPD) plotted as a function of wall filter cut-off 

velocity, is shown using the blue line and left-hand y-axis. The normalized absolute 

first difference of the CPD, |ΔCPD|norm (Eqn 2-2), is plotted using the green bars 

and the right-hand y-axis. The black curve is the envelope of the |ΔCPD|norm data. 

(b) Results of the first iteration of the N-point maximum envelope peak (MEP) 

search. The initial filtered envelope is shown in black. Two candidate characteristic 

intervals, A and B, are identified by the V shapes in the filtered envelope (red 

crosses). (c) Results of the second iteration of the MEP search displayed using the 

same format as panel (b). (d) The final detected characteristic intervals, C and B, 

are highlighted in red on the WFSC. The reference vascular volume fraction of the 

subregion is indicated by the horizontal dashed line. 
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The candidate characteristic intervals identified by each iteration of the MEP 

search are compared to eliminate duplicate intervals and merge intervals that share a 

common endpoint. If a longer candidate interval completely overlaps a shorter candidate 

interval, only the longer interval is retained. Since WFSCs asymptotically converge to 

zero CPD at high cut-off velocities, the algorithm may inappropriately interpret small 

fluctuations in CPD as defining a spurious characteristic interval at very low CPD. To 

prevent such artifacts, any interval whose mean CPD corresponds to a single color pixel 

is also discarded. The one or more intervals that remain after these rules are applied are 

the final detected intervals. 

In the example shown in Figure 2-2, the first iteration yields an interval labeled A 

from 1.3 to 2.1 mm/s and an interval B from 2.7 to 3.5 mm/s. The second iteration yields 

a third candidate interval C from 0.7 to 2.1 mm/s. Since interval C completely overlaps 

interval A, the latter interval is discarded, so B and C are the final detected intervals 

(Figure 2-2(d)). 

2.2.3 Selection of operating cut-off velocity along a characteristic interval 

Since characteristic intervals may be horizontal or sloped, a method is needed to 

choose an operating point along the interval. A multiple-step decision algorithm, outlined 

in the flow chart in Figure 2-3, was designed to select an operating point at either the 

right end or the center of the characteristic interval. This algorithm was developed by 

experimentation with the flow-phantom data, but, as is explained in the Discussion 

section, it can also be justified by referring to the mathematical model of the WFSC that 

was introduced in [13]. The choice of the operating point depends on the slope of the 

interval in comparison to the slopes of the surrounding segments of the WFSC. If more 

than one characteristic interval is detected, the middle or the right end of the first interval 

(i.e., interval C in Figure 2-2) is chosen depending on the rank of its slope, as illustrated 

in Step 1 of Figure 2-3. If only one interval is detected, the slope of the interval is also 

compared to the slopes of the characteristic intervals of the other subregions in the ROI 

(Step 2 of Figure 2-3). Slopes are ranked lowest, middle or highest in comparison to the 

slopes of the surrounding segments of the selection curve as illustrated schematically in 

Figure 2-3. The purpose of these comparisons is to guarantee that the center of the 
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interval is only selected for the most inclined intervals among all the subregions; 

otherwise, the right end of the interval is the operating point. 

2.2.4 ROI reconstruction 

The characteristic-interval-detection and operating-point-selection algorithms are 

applied individually to each subregion in the ROI. Once an operating point is selected for 

a subregion, eleven power Doppler image frames acquired at that cut-off velocity are 

averaged. Eleven frames were sufficient for averaging because the frame-to-frame 

variability of the CPD was small [13]. If no characteristic interval was detected in the 

WFSC for a particular subregion, that subregion is assumed to contain no flow, and B-

mode image frames rather than power Doppler frames are averaged. The averaged 

subregion images are then tiled together to produce a reconstructed image of the ROI. 

Vascularity is quantified in the reconstructed image by computing the CPD. 

2.2.5 Power Doppler image acquisition 

The redesigned WFSC algorithm was implemented in Matlab 7 (The MathWorks 

Inc., Natick, MA) and applied to previously acquired power Doppler images of a four-

vessel flow phantom [13] for evaluation. The outer diameters of the four vessels were 

200, 250, 250, and 300 µm. The flow rate of the blood-mimicking fluid was 6000 µl/hr, 

which corresponded to flow velocities of 5.4--9.6 mm/s. Power Doppler images were 

acquired using a Vevo 770 swept-scan high-frequency ultrasound system (VisualSonics, 

Toronto, ON, Canada) with a 30-MHz transducer (model RMV707, 12.7 mm focal 

length, 55 µm axial resolution, 115 µm lateral resolution, 2.2 mm depth of field). Images 

were acquired in three different transducer orientations to obtain planes showing high, 

medium, and low levels of vascularity. Images were acquired at incrementally increasing 

wall filter cut-off velocities until minimal flow was present in the power Doppler images. 

Eleven frames were recorded at each wall filter cut-off. In each image, the power Doppler 

color box, which was 2.5 mm (axial) × 3 mm (lateral), exhibited vertical bands of color 

pixels at its lateral boundaries due to the change in direction of the mechanically scanned 

probe. Therefore, 15-pixel (0.27 mm) columns were cropped from both lateral boundaries 
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of the color box to yield an ROI of 140 pixels (axial) ×138 pixels (lateral) for WFSC 

processing. 

 

Figure 2-3: Flow chart for selection of an operating point cut-off velocity along a 

characteristic interval. Two steps are shown; the second step is only applied to the 

slopes stored in the box indicated with “*”. The concept of ranking slopes as low (1), 

middle (2), or high (3) is defined schematically next to the flow chart. 
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For each of the three fields of view, a mask image was generated to estimate the 

reference vascular volume fraction of that slice through the phantom. Mask images were 

computed from a set of four B-mode images of the phantom as follows. First, the B-mode 

gray scale was linearized by inverting the logarithmic compression function specified by 

the manufacturer [20]. The four images were grouped into two pairs. Each pair of 

linearized images was subtracted, then each difference image was normalized by its 

maximum pixel magnitude, and the two normalized images were averaged to produce a 

single image. Vessels in the averaged image were manually segmented using ImageJ 

(U.S. National Institutes of Health, Maryland, USA) by free-hand selection of an initial 

vessel contour that was subsequently smoothed by fitting a cubic spline. Manual vessel 

segmentation was repeated five times for each field of view and the segmentation that 

yielded the median estimated vascular volume fraction was used as the reference mask 

image for that ROI. 

2.2.6 Performance analysis of WFSC method 

The performance of each step of the redesigned WFSC method was evaluated 

individually. First, to confirm that the automated algorithm for characteristic interval 

detection functions as intended, the locations of the detected intervals were visually 

compared to the locations of prominent local maxima in the |ΔCPD|norm data. The 

accuracy of characteristic interval detection was also evaluated by comparing the CPD 

values along the intervals to the reference vascular volume fraction estimated for the 

corresponding subregion from the mask image. 

Second, to demonstrate the value of the method for selecting an operating point 

along a characteristic interval, the ideal operating point was defined as which of two 

options (center or right end of the interval) yielded a CPD closer to the reference vascular 

volume fraction for that subregion. For subregions that included a detected characteristic 

interval, the frequency at which the ideal operating point fell at each of the center and the 

right end of the interval was determined. The number of cases in which the automatically 

selected operating point matched the ideal operating point was determined separately for 

each ROI and each choice of operating point (i.e., center or right end). 
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Third, to demonstrate the value of selecting separate operating cut-off velocities 

for each subregion in an ROI, the variation in the selected cut-off velocity was quantified 

by computing the mean, standard deviation, and range of the selected cut-off velocities 

for each ROI. 

Finally, the fidelity of each reconstructed image was evaluated by computing its 

CPD and determining the percent error of the CPD from the reference vascular volume 

fraction. The reconstructed images were also assessed visually by comparing the 

sharpness and continuity of the vessels to the mask images and to the vessels depicted in 

power Doppler images produced using the previous version of the WFSC method [13], 

which selects a single cut-off velocity for the entire ROI. 

2.3 Results 
2.3.1 Characteristic interval detection 

Characteristic intervals detected by the redesigned algorithm consistently aligned 

with prominent local maxima in |ΔCPD|norm, as illustrated in Figure 2-2. The detected 

intervals always included the CPD sample closest to the reference vascular volume 

fraction of the corresponding subregion. In the subregions that intersected the two closely 

spaced vessels near the middle of the high- and medium-vascularity ROIs (see the mask 

images in Figure 2-4), two characteristic intervals were always detected, as expected, at 

all of the subregion dimensions tested by the iterative algorithm. Similarly, single 

characteristic intervals were consistently detected in subregions containing only one 

vessel. In all but two cases, no characteristic intervals were detected in subregions that 

contained no flow according to the mask images. The two exceptions were subregions 

near the deepest vessel in the high vascularity ROI. Both of those spuriously detected 

intervals had mean CPD close to 0.001, so they contributed negligible error to the CPD of 

the reconstructed image. 
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Figure 2-4: Image improvement produced by the redesigned wall filter selection 

curve (WFSC) method. The top row shows the images acquired using the original 

method where a single cut-off was selected for each ROI [13]. The middle row shows 

the mask images of the three ROI of the phantom. The bottom row shows the 

reconstructed images produced by applying the redesigned WFSC method. 
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2.3.2 Selection of an operating point cut-off velocity 

Comparison of the cut-off velocity at the automatically selected operating point 

for each subregion to the ideal operating point defined in the Methods indicates that the 

addition of this step to the WFSC method produces a meaningful change in the results 

and that the automated algorithm accurately selects the ideal operating point in the 

majority of cases. Figure 2-5 shows that the ideal operating point corresponded to each of 

the middle and right end of the characteristic interval in about half of the total subregions 

with detected flow (e.g., the ideal operating point was at the middle of the interval in 17 

out of 31 subregions). The automatically selected operating point matched the ideal 

operating point in 25 of 31 subregions with detected flow, for an overall accuracy of 

80.6%. 

 

Figure 2-5: Analysis of accuracy of the selection of operating point cut-off velocity. 

The numbers of ideal operating points located at the middle and the right end of the 

detected characteristic interval are represented by the black solid bars. The number 

of correctly selected operating points is shown by the cross-hatched bars 

The range of variation in the cut-off velocities at the selected operating points 

(Table 2-1) demonstrates the appropriateness of allowing the cut-off velocity to vary 

within the ROI. The coefficient of variation (standard deviation divided by mean) of the 



www.manaraa.com

 56 

selected cut-off velocities was at least 0.52 in the three ROIs studied. The greatest 

variation in selected cut-off velocity occurred in the low vascularity ROI. 

Table 2-1: Variation of selected cut-off velocities among subregions of high, 

medium, and low vascularity ROIs 

Vascularity of ROI Mean (mm/s) Standard deviation (mm/s) Range (mm/s) 

High 3.3 1.75 1.5 - 5.0 

Medium 3 1.57 1.1 - 4.5 

Low 5.8 3.96 1.9 - 11.0 

 

2.3.3 Reconstructed images 

The redesigned WFSC method produced both qualitative and quantitative overall 

improvement of the power Doppler images. The vessels depicted in the reconstructed 

images more closely matched the mask images and had smoother boundaries compared to 

the images obtained using the previous version of the WFSC method (Figure 2-4). The 

improved vessel visualization in the images reconstructed using the redesigned method is 

attributed in part to the redesigned method's ability to vary the cut-off velocity to be 

suitable for individual vessels rather than selecting one cut-off velocity for the entire 

ROI. A minor drawback of varying the cut-off velocity is that a transition between 

adjacent subregions is occasionally visible in the reconstructed images, particularly for 

the lower transverse vessel in the medium vascularity ROI. 

Table 2-2 summarizes the accuracy of the CPD of the reconstructed images as an 

estimate of the reference vascular volume fraction of the phantom. Neither the original 

nor the redesigned WFSC method was able to detect the deepest vessel in the high and 

medium vascularity ROIs. Therefore, for these images, the percentage error in the CPD 

of the top three vessels is the fairest measure of the method's ability to improve 

quantification of vessels that are detectable by the power Doppler system. This error was 
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less than 3% for all three ROIs. In comparison to the CPD estimates reported in [13] for 

the original WFSC method, the CPD values obtained for the top three vessels using the 

redesigned method are closer to the vascular volume fractions estimated from the mask 

images (see also Table 2-2). 

Table 2-2: Relative accuracy of quantification of blood flow for high, medium, and 

low vascularity ROIs 

  Vascularity of ROI 

  High Medium Low 

Reference vascular volume fraction 0.1944 0.1283 0.0567 

Original method CPD 0.2014 0.0859 0.0407 

Reconstructed CPD (Top 3 vessels) 0.1961 0.1295 0.0583 

Reconstructed CPD error (Top 3 vessels) 0.90% 0.89% 2.76% 

Deepest vessel CPD error -2.35% -3.03% -- 

Total CPD error -1.45% -2.14% 2.76% 

 

2.4 Discussion 
The redesigned WFSC method presented in this chapter generates power Doppler 

images in which the wall filter cut-off velocity can vary among subregions of the Doppler 

ROI. These images have minimal artifact, are qualitatively and quantitatively improved 

compared to images acquired at any single cut-off velocity, and therefore are considered 

more suitable images for vascular quantification. The redesigned method is more 

automated than the previous WFSC method [13] and provides better overall performance. 

The WFSC method was improved by enhancing its two fundamental processes, 

characteristic interval detection and selection of an operating point cut-off velocity. 
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Accurate characteristic interval detection is the foundation of the WFSC method. 

The interval detection algorithm was developed by trying to match the ability of a human 

observer to visually identify (in bar graphs like Figure 2-2) pairs of local maxima in 

|ΔCPD|norm that bound candidate characteristic intervals. Therefore, the observation that 

the automatically detected characteristic intervals consistently aligned with local maxima 

in |ΔCPD|norm is considered evidence that the algorithm functions as intended. The 

algorithm consistently detected two characteristic intervals in subregions traversed by 

two vessels. The automated algorithm produced this result without a priori input about 

the expected number of characteristic intervals and therefore should be capable of 

detecting more than two intervals if presented with image data for a subregion containing 

many vessels with different sizes and flow rates. 

 

An important strength of the redesigned algorithm is its ability to detect 

characteristic intervals that would have been missed by our previous threshold-based 

detection method. Consider, for example, intervals A and C in Figure 2-2. In the previous 

version of the method, the WFSC was analyzed by computing |ΔCPD| ⁄ CPD = |CPD2 - 

CPD1| ⁄ CPD1, i.e., the denominator was different from the |ΔCPD|norm metric defined in 

Eqn 2-2. Figure 2-6 shows the WFSC from Figure 2-2 with the previous method's |ΔCPD| 
⁄ CPD metric overlaid as a bar graph. The previous method identified plateaus by 

searching for sets of consecutive |ΔCPD| ⁄ CPD bars that fell below a predetermined 

threshold (which was 0.14 for flow-phantom data) and were bounded by bars that 

exceeded the same threshold. Although |ΔCPD| ⁄ CPD is less than the threshold along the 

entire length of interval C, it would not have been considered a plateau because there is 

no preceding |ΔCPD| ⁄ CPD value greater than the threshold. However, as shown in 

Figure 2-2(d), the CPD values along interval C pass through the reference vascular 

volume fraction of that subregion, which is evidence that the best choice of cut-off 

velocity does lie within interval C. The previous method was designed to search for 

plateaus along a WFSC, but we now consider it a more robust approach to search for 

distinct intervals that need not be approximately horizontal. The redesigned method is 

capable of detecting such intervals. 
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Figure 2-6: Original method for detecting characteristic intervals. The WFSC of 

Figure 2-2 is plotted using the blue line and left-hand y-axis. The metric used in the 

original method, |ΔCPD|norm, is shown using the violet bars and the right-hand y-

axis. The final detected intervals from Figure 2-2, C and B, are highlighted in red on 

the WFSC. The range of cut-off velocities over which intervals C and B extend is 

shown using the arrows. The reference vascular volume fraction of the subregion is 

indicated using the horizontal dashed line.  Interval C would not be detected (see 

discussion in text) 

A justification for defining the selection of a cut-off velocity operating point as a 

binary decision between the velocity at the middle or right end of the characteristic 

interval can be made using the mathematical model from [13]. If a subregion contains 

only an easily detected vessel, the probability density functions (PDFs) of the vessel and 

background velocity estimates are widely separated and the mathematical model predicts 

that the WFSC will possess a long, horizontal characteristic interval. Selecting the right 

end of this characteristic interval minimizes false-positive color pixels in the background 

while retaining almost all of the true-positive color pixels within the vessel. On the other 

hand, a vessel that is more challenging to detect corresponds to overlapping PDFs for the 

vessel and background velocity estimates. In this case, selecting an operating point in the 

range of cut-off velocities where the PDFs overlap will yield the best possible 
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combination of sensitivity and specificity, i.e., a point near the knee of the receiver 

operating characteristic for flow detection. The mathematical model predicts that this 

operating point will correspond to the middle of a relatively short, sloped characteristic 

interval. Therefore, the model suggests that the operating point should be chosen at the 

right end of gently sloped intervals and at the middle of more steeply sloped intervals. In 

the flow phantom data, subregions containing higher velocity flow, which should be 

readily detected, had flatter characteristic intervals, whereas subregions of slower flow, 

which should be more difficult to detect, had more steeply sloped intervals. 

 

Figure 2-7: Effects of non-uniform and insufficient sampling of the wall filter 

selection curve (WFSC). (a) Erroneous detection of a characteristic interval in a 

subregion of no flow. The WFSC is shown using the blue line and left-hand y-axis. 

The normalized absolute first difference of the CPD, |ΔCPD|norm (Eqn 2-2), is 

plotted using the green bars and the right-hand y-axis. The detected characteristic 

interval is highlighted in red. The two arrows show higher values of |ΔCPD|norm 

caused by gaps in the sampled data, leading to false detection of a characteristic 

interval. (b) An example of a discrepancy between the ideal and the selected 

operating point cut-off velocity. The WFSC, |ΔCPD|norm and the detected interval 

are displayed using the same format as panel (a). Only two samples are available in 

the portion of the selection curve following the characteristic interval (arrow). This 

leads to an unreliable estimate of the slope of the last portion of the curve, which 

causes an incorrect ranking of the slope of the characteristic interval. 
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The few cases where the redesigned WFSC method yielded unexpected results are 

attributed to non-uniform or insufficient sampling of the WFSC. In subregions where the 

mask image indicated that no flow was present, spurious characteristic intervals were 

occasionally detected at low CPD if large gaps in the sampled cut-off velocities caused 

large peaks in the  |ΔCPD|norm data (e.g., Figure 2-7(a)). Discrepancies between the ideal 

and automatically selected operating points, particularly in the low vascularity ROI, 

tended to occur when there were few samples along the WFSC (e.g., Figure 2-7(b)), 

which increased the uncertainty of the slope estimates for the characteristic interval 

and/or the other segments of the WFSC that the characteristic interval is compared with 

to determine its relative steepness. Therefore, the method could be further improved by 

developing WFSC sampling criteria to ensure images are acquired at a sufficient number 

of uniformly and closely spaced cut-off velocities. 

This study was limited by the fact that only scan-converted image data was 

available for analysis, so it was not possible to retrospectively reconstruct images at 

additional cut-off velocities. Therefore, the results in this chapter are based on images 

acquired at only the highest flow rate (6000 µl/hr) used in [13] because the sets of images 

acquired at the lower flow rates did not include a sufficient number of uniformly spaced 

samples along the cut-off velocity axis to apply the redesigned method. This problem can 

be avoided in future studies by recording quadrature demodulated Doppler data rather 

than scan-converted images, which would enable each subregion to be retrospectively 

analyzed at any number of cut-off velocities. 

Two minor difficulties identified in the reconstructed images were the 

occasionally visible transitions between adjacent subregions and the inability to detect the 

deepest vessel in the high and medium vascularity ROIs. The lower transverse vessel in 

the medium vascularity ROI provided an illustration of a visible transition (Figure 2-4). 

In this case, the WFSC method correctly selected the ideal operating point for all three 

subregions traversed by the vessel, but the 2.7 mm/s operating point for the subregion at 

the center of the vessel was much higher than the 1.4 mm/s average operating point 

selected at the ends of the vessel. This large difference in cut-off velocity caused the 

discontinuities in the reconstructed image. This problem may be prevented by 
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constructing more finely sampled WFSCs. Alternatively, the WFSC method could be 

modified to analyze overlapping rather than tiled subregions to enable the results 

obtained from overlapping subregions to be used to smooth the transitions between them. 

It is not surprising that the deepest vessel in the high and medium vascularity 

ROIs was difficult to detect because that vessel contained slow flow due to its small 

diameter and also yielded low Doppler power due to attenuation. However, analyzing 

more finely sampled WFSCs may also improve the likelihood of detecting such a vessel. 

Finer sampling would require the WFSC to be evaluated at additional low values of the 

cut-off velocity, which could help the method extract a characteristic interval by 

increasing the number of  |ΔCPD|norm data points available at those low cut-off velocities. 

If the WFSC sampling criteria do prove capable of improving detection of challenging 

vessels, this capability may also improve the performance of the method for 

quantification of low vascularity ROIs, where a small number of false-negative color 

pixels can produce a significant percentage change in the CPD of a reconstructed image. 

The strengths of the redesigned WFSC method are that (1) it is an uncomplicated 

technique that works by analyzing a quantity, CPD, that is directly relevant to vascular 

quantification, (2) the method is based on receiver operating characteristic statistics for 

blood-flow detection that make no assumption of ultrasound frequency, so it is expected 

to be applicable to clinical frequency as well as high-frequency systems [13], and (3) the 

method minimizes reliance on predetermined thresholds. The threshold of maximum 

CPD < 0.80 that is used to determine the size of the subregions is the one aspect of the 

method that does not meet the ideal of being entirely data dependent. The maximum CPD 

threshold was selected empirically by experimenting with the flow phantom data, so 

developing an algorithm with a more rigorous foundation to subdivide the ROI is one 

opportunity to further improve the WFSC method. This problem would best be 

approached using in vivo data. Analysis of in vivo data will also provide a more 

challenging test of the WFSC method due to the presence of background tissue motion, 

although the flow-phantom data used in this study did include some apparent background 

motion as a result of the swept-scan data acquisition. 
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The long-term goal of this research is to apply the WFSC method as a tool for 

real-time optimization of Doppler acquisition parameters. The algorithm was purposely 

designed to be uncomplicated and require minimal user input. The current offline 

implementation produces reconstructed images in 1-2 seconds despite the fact that no 

effort was invested in minimizing the computation time, so development of a real-time 

implementation is certainly feasible. 

An online implementation of the WFSC method will yield the greatest benefit in 

scanners that are intended to be operated by non-specialist or time-sensitive users. 

Portable ultrasound scanners used to improve health-care delivery in remote and low-

resource settings [21, 22] exemplify one potential application for the method. Simplified 

scanner controls have been identified as a critical need for portable ultrasound systems 

[23]. Preclinical ultrasound systems are also intended to be used by non-specialist 

operators (biomedical scientists in this case) and so share with portable ultrasound 

systems a need for simplified controls. As discussed in the Introduction, the WFSC 

method could be specifically valuable in longitudinal cancer studies. Since tumor 

vascularity can oscillate rapidly in mouse models [24], more frequent imaging sessions 

may provide valuable information about the dynamics of tumor angiogenesis and 

responses to anti-vascular therapies. We envision a synergistic use of power Doppler in 

preclinical (and possibly clinical) trials in which DCE-CT, DCE-MRI, or PET is used at a 

few checkpoints and Doppler is used to interpolate tumor vascularity measurements 

between those checkpoints. For power Doppler to be used for this purpose, acquisition 

settings such as the wall filter cut-off velocity, and hence the images themselves, must be 

optimized for accurate vascular quantification at each time point. The WFSC method can 

provide the means to perform this optimization. 

2.5 Conclusion 
The wall filter selection curve method is proposed for objectively and 

automatically selecting a wall filter cut-off velocity in a power Doppler system. This 

chapter presents a redesigned WFSC method that provides three key improvements. First, 

the redesigned method automatically detects single or multiple characteristic intervals, 
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which may be sloped, without using a predetermined threshold. Second, the new method 

selects an operating point along the detected characteristic interval in a data-dependent 

fashion. Finally, the cut-off velocity is adapted to local vasculature by independently 

applying the improved method to subregions within the Doppler ROI. The improved 

automation and performance of the WFSC method enhances its suitability for online 

implementation in a power Doppler scanner. Future online implementations of the 

method are expected to make it possible for non-specialist or time-sensitive operators, 

such as the users of portable scanners and preclinical scanners, to reproducibly acquire 

diagnostic-quality, quantitatively accurate Doppler images. 
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Chapter 3  
3 A new three-component signal model to 

objectively select power Doppler wall filter 
cut-off velocity for quantitative microvascular 
imaging 

 

The content of this chapter has been adapted from: "A new three-component 

signal model to objectively select power Doppler wall filter cut-off velocity for 

quantitative microvascular imaging," published in, Proc. SPIE, vol.8670, article 86750J 

2013, by M. Elfarnawany and J. C. Lacefield. 

 

3.1 Introduction 
Power Doppler ultrasound is a noninvasive, economical approach to 

microvascular imaging, but use of Doppler for quantitative applications such as 

evaluating treatment responses in oncology trials is often discouraged due to the operator 

dependence of the images [1]. As reviewed in [2], operator dependence is a consequence 

of the sensitivity of the images to user selected acquisition parameters such as gain, pulse 

repetition frequency, and wall filter cut-off velocity. The wall filter selection curve 

(WFSC) method [2-4] has been proposed to address this problem. The WFSC method has 

been shown to be effective for objective selection of wall filter cut-off velocity in high-

frequency (30 MHz) power Doppler images of flow phantoms containing 200-300 µm 

diameter vessels. In the WFSC method, a set of power Doppler images is acquired over a 

range of values for the cut-off velocity. The color pixel density (CPD, equal to the 

fraction of pixels with detected flow) is computed within matching regions of interest 

(ROI) in each image and plotted as a function of the cut-off velocity. The resulting curve 
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(e.g., Figure 3-1) possesses a distinct “characteristic interval” that can be used to select an 

operating point cut-off velocity at which the CPD provides an accurate estimate of the 

vascular volume fraction in the region of interest. 

An uncomplicated mathematical model was proposed in [4] to describe the 

mathematical basis of the WFSC method. In the original model, power Doppler imaging 

is treated as a signal detection task in which color pixels are obtained from two sample 

populations, true-positive pixels within vessels and false-positive pixels in the tissue 

background. For a region of interest containing a single vessel, the CPD can be expressed 

as a function of the cut-off velocity: 

 

€ 

CPD(vc ) = FvTPF(vc ) + 1− Fv[ ]FPF(vc )   Eqn. 3-1 

where vc is the wall filter cut-off velocity, TPF(vc) and FPF(vc) are the true- and false-

positive fractions obtained as the cut-off velocity is varied, and Fv is the vascular volume 

fraction within the ROI. As detailed in [4], a closed-form version of Eqn. 3-1 can be 

obtained by assuming the probability density function (PDF) of the Doppler velocity 

estimates for the extravascular pixels is characterized by a zero-mean Gaussian 

distribution with a specified variance. The color pixel FPF as a function of cut-off 

velocity is then given by the area under the extravascular PDF from -∞ to -vc plus the 

area under the PDF from vc to ∞. The color pixel TPF is obtained similarly, except the 

PDF of intravascular Doppler velocity estimates is assumed to possess a non-zero mean 

and a potentially different variance. Evaluation of Eqn. 3-1 over a range of values for the 

underlying parameters demonstrated that the cut-off velocity selected by the WFSC 

method can be expected to yield an accurate estimate of the vascular volume fraction 

only if the characteristic interval is longer than an identifiable minimum length and 

begins at a cut-off velocity less than an identifiable minimum velocity [4]. These insights 

from the mathematical model proved valuable to the initial development of the WFSC 

method. 
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However, a few shortcomings of the original mathematical model emerged during 

subsequent development of the WFSC method [2]. The most important of these is that, 

although the model in [4] predicts that characteristic intervals should usually be 

horizontal or nearly so, sloped characteristic intervals are frequently observed even in the 

relatively idealized context of flow-phantom images. A second shortcoming is that the 

original mathematical model did not always provide an accurate fit to the segment of the 

WFSC at cut-off velocities beyond the right end of the characteristic interval. This detail 

is relevant because the shape of the WFSC as the CPD rolls off to zero affects the 

performance of the current algorithm [2] for detecting a characteristic interval. Therefore, 

the objective of this chapter is to propose and demonstrate modifications to the 

mathematical model that address these inaccuracies. 

Our primary motivation for improving the mathematical model is to obtain a 

conceptual tool that will be useful for designing an online implementation of the WFSC 

method. This application is used to demonstrate the revised model in the following 

sections. However, the model also presents a more broadly useful perspective for 

understanding and characterizing the performance of power Doppler imaging. Although 

power Doppler is commonly used, most studies of factors affecting the performance of 

power Doppler have involved time-consuming flow-phantom experiments. The most 

sophisticated theoretical analysis of power Doppler led to an ideal observer model that 

provides an upper bound on flow-detection performance [5-7]. These papers presented 

simulations and flow-phantom studies that were analyzed using signal-detection 

parameters that are difficult to directly relate to the accuracy of vascular quantification 

and difficult to interpret for the purpose of guiding the operator’s selection of image 

acquisition parameters. Our mathematical model of the WFSC method approaches the 

same signal detection problem from a more empirical perspective that is intended to be 

straightforward for other Doppler researchers to adopt and apply to their own image data. 

The following sections introduce an improved three-component mathematical 

model that is obtained by separating the background pixels into a perivascular population 

and an extravascular population. The inclusion of a perivascular image component is 

motivated by our observation in flow-phantom images that color pixels just outside the 
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vessels are the last false-positive pixels to be eliminated as the cut-off velocity is 

increased [4]. In addition, a cost function is defined that weighs the positive utility of 

true-positive (intravascular) color pixels against differing penalties for perivascular color 

pixels, which have a relatively modest impact on vessel visualization, and extravascular 

color pixels. The cost function incorporates into the analysis the concept that the cut-off 

velocity that best visualizes the vascular architecture may not be the cut-off velocity that 

yields a CPD exactly equal to the actual vascular volume fraction. Finally, the usefulness 

of the three-component model is demonstrated by using the model and cost function to: 

(1) determine the number of cut-off velocities at which a WFSC should be sampled to 

ensure the automated algorithm of [2] yields accurate results, (2) evaluate the sensitivity 

of the WFSC method to frame-to-frame variation in CPD, which is expected to be greater 

during in vivo imaging than in flow-phantom images, and (3) assess the potential value of 

developing a more complicated algorithm for selecting an operating point cut-off velocity 

in comparison to the current WFSC method, which is constrained to a binary decision 

between operating points at the middle and right end of the characteristic interval [2]. 

3.2 Materials and Methods 
3.2.1 Revised Mathematical Model  

Two modifications are proposed to our original two-component mathematical 

model presented in [4]. First, a third, perivascular, Gaussian distributed signal component 

is added to represent the effect of the Doppler artifacts that cause the appearance of color 

pixels in the perivascular tissue immediately surrounding a vessel. These artifacts are 

caused by turbulent flow, reverberations, or too high gain settings [8, 9]. Second, a log-

normal distribution is now assumed for the first-order statistics of the intravascular signal 

component because log-normal statistics more accurately correspond to the distribution 

of flow velocities in a region of interest containing a network of vessels [10]. The revised 

model has the form: 

€ 

CPD(vc ) = FvICPF(vc ) + wFvPCPF(vc ) + [1− (1+ w)Fv )]ECPF(vc )         Eqn. 3-2 
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where vc is the wall filter cut-off velocity, Fv is the vascular volume fraction of the 

vessel(s) within the region of interest (ROI), w is a weight parameter used to define the 

volume fraction of the perivascular compartment, and ICPF(vc), PCPF(vc), and ECPF(vc) 

are the color pixel fractions in the intravascular, perivascular, and extravascular 

compartments, respectively, as functions of vc. The volume fraction of the perivascular 

compartment is defined as a fraction of the vascular volume fraction, Fv, since it was 

shown by [8, 9] that the perivascular artifacts are function of the vessel diameter, flow, 

and orientation. 

The ICPF, PCPF, and ECPF terms in Eqn. 3-2 are evaluated as described in [4] 

by assuming an analytical form for the probability density function of the Doppler 

velocity estimates in each compartment and using the corresponding cumulative density 

function to compute the proportion of velocity estimates in each compartment that are 

greater than vc. In the intravascular compartment, where the Doppler velocity estimates 

are assumed to be log normally distributed, the natural logarithm of the velocity estimates 

is therefore normally distributed, so ICPF(vc) can be computed using the standard-normal 

cumulative density function as described in [11]: 

 

   Eqn. 3-3(a) 

   Eqns. 3-3(b-c)

   

In Eqns. 3-3, ϕ is the standard-normal cumulative density function, vc ≥ 0, µln and 

σln are the mean and standard deviation of the natural logarithm of the Doppler velocity 

estimates, and µi and σi are the mean and standard deviation of the log-normally 

distributed velocity estimates for the intravascular pixels. 

Mean velocity estimates in the three compartments are chosen such that, as vc is 

increased from zero, extravascular color pixels are preferentially eliminated at lower cut-

offs than perivascular color pixels, which are in turn preferentially eliminated at lower 

cut-offs than intravascular color pixels. The velocity estimates in the extravascular pixels 
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were assumed to be zero mean as in [4], while the mean velocity estimate in the 

perivascular compartment was set to the average of the intra- and extravascular mean 

velocity estimates. Therefore, the equations for the color pixel fractions in the 

perivascular and extravascular compartments are: 

€ 

PCPF(vc ) =1+ φ(−vc − µi /2
σ p

) −φ(vc − µi /2
σ p

),   Eqn. 3-4 

€ 

ECPF(vc ) = 2φ(−vc
σ e

),      Eqn. 3-5 

where σp and σe are the standard deviations of velocity estimates for the perivascular and 

extravascular pixels, respectively. 

The three-component mathematical model (Eqn. 3-2) was manually fit to 20 wall-

filter selection curves generated from the single-vessel ROIs [4] or selected subregions of 

ROIs [2] in the flow phantom data by adjusting the parameters µi, σi, σp, and σe. For each 

ROI or subregion, the vascular volume fraction, Fv, was set to the reference value 

obtained from manually segmented B-mode images of that ROI or subregion in the 

phantom [2, 4]. An F-test was used to compare the goodness of fit of the three-

component model and the original two-component model [4] to each of the 20 

experimental WFSCs. Secondly, to validate the assumption of log-normally distributed 

velocity estimates in the intravascular pixels, a t-test was used to compare the sum-of-

squares of the error in fitting the proposed three-component model to the error in fitting 

an all-Gaussian three component model with identical values for the means and standard 

deviations of the Doppler velocity estimates. 
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Figure 3-1: Theoretical wall filter selection curves (blue lines) fitted to experimental 

multiple-vessel flow-phantom data (dotted black lines) using: (a) original 2-

compnenet model (Eqn. 3-1) and (b) new 3-component model (Eqn. 3-2). The 

detected characteristic intervals are highlighted in violet. The 3-component model 

fits the sloped interval in the flow-phantom WFSC significantly better than the 2-

component model. 

3.2.2 Cost Function 

The cost function used to define the optimum cut-off velocity along a 

characteristic interval of a synthetic WFSC is given by: 

€ 

Cost(vc ) = FvUIFN IFNF(vc ) + wFvUPCPPCPF(vc ) + [1− (1+ w)Fv )]UECPECPF(vc )Eqn. 3-6 

where IFNF(vc) = 1-ICPF(vc) is the false-negative fraction in the intravascular 

compartment, UIFN, UPCP, and UECP are the utilities of the intravascular false-negative 

color pixels, perivascular false-positive color pixels, and extravascular false-positive 

color pixels, respectively In the following simulations, the utilities UIFN, UPCP, and UECP 

are set to 2, 1, and 2, respectively, to model our assumption that false-positive color 

pixels in the perivascular compartment are less detrimental to image interpretation than 

false-negative color pixels in the intravascular compartment or false-positive color pixels 

in the extravascular compartment. The cost function is evaluated for vc within the 
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characteristic interval of the corresponding WFSC only and the optimum cut-off velocity 

is defined as the vc yielding the minimum cost along the characteristic interval. A sample 

cost function is shown in Figure 3-2. 

 

Figure 3-2: A sample cost function (solid line) is produced from a weighted 

combination of false-positive (dashed line) and false-negative (dotted line) error 

fraction along a detected interval. The relative position along the interval was 

represented as a percentage of the interval length, where 0% corresponded to the 

left end of the interval and 100% corresponded to the right end. In this example, the 

point of minimum cost (solid circle) matches the point corresponding to the true cut-

off velocity (vertical line) along the interval. 

3.2.3 Generation of Simulated WFSCs and Cost Functions 

Theoretical wall-filter selection curves and their corresponding cost functions 

were generated in Matlab 7 (The MathWorks, Natick, MA) by evaluating Eqns. (3-2) and 

(3-6) for vc = 0 to 18 mm/s for many different combinations of µi, σi, σp, σe., Fv, and w as 

specified in Table 3-1. The ranges of variation for σi, σp, and σe., were chosen to match 

the ranges of values needed to fit the three-component model to WFSCs of single vessel 

ROIs and subregions of ROIs as explained in Sec. 3.2.1, thereby approximating the 

characteristics of the curves obtained from flow-phantom data. The range of Fv included 

the high vascular volume fractions observed within small subregions of the Doppler ROI 
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[2]. The lower bound on the value of µi, 2.8 mm/s, was chosen to be within the 2-10 

mm/s blood flow velocity range expected in tumor arterioles of 20-120 µm diameter. The 

2-10 mm/s velocity range was estimated based on an experimental study showing that 

blood flow velocities in normal tissue arterioles of 20-120 µm diameter range between 20 

and 100 mm/s [12] and the observation that blood velocities in tumor microvessels are 

typically an order of magnitude less than in normal vessels[13]. 

For each simulation, trials were excluded from further processing if PCPF was 

greater than or equal to 20 times ICPF at a low cut-off velocity of µi ⁄ 4. In these cases, 

the number of perivascular color pixels (w Fv PCPF) is greater than or equal to the 

number of intravascular color pixels (Fv ICPF) at the minimum value of w =5%. This 

condition was assumed to represent an unrealistically high number of perivascular color 

pixel artifacts. Upon applying this condition, each simulation included approximately 

2080 trials testing different combinations of the model parameters. 

Table 3-1: Ranges of variation of vascular parameters for the numerical analysis 

Parameter Range simulated 

µi 2.80 – 8.00 mm/s 

σi 0.15 – 4.00 mm/s 

σp 0.15 – 2.00 mm/s 

σe 0.15 – 1.00 mm/s 

Fv 0.20 – 0.80 

w 0.05 – 0.20 

 

3.2.4 Performance Analysis of the WFSC Method 

3.2.4.1 Sensitivity to number of cut-off velocity samples 

To investigate the effect of the number of cut-off velocity samples on the 

performance of the WFSC method, synthetic WFSC data were produced by sampling the 

theoretical WFSC curve (Eqn. 3-2) at equal intervals from 10 to 200 samples in 
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increments of 10 samples for vc = 0 to 18 mm/s. Highly oversampled curves containing 

1000 samples were also produced. Each sampled curve was processed using the 

automatic WFSC algorithm [2] to determine the locations along the vc axis of the 

beginning and end of the characteristic interval. For each of the sampled curves, two 

characteristic interval detection errors were defined as the differences between the cut-off 

velocities at the start and end of the detected intervals and their corresponding cut-off 

velocities for curves of 1000 samples. The mean interval detection error over the 2080 

curves times 2 errors/curve was plotted as a function of the number of samples. The 

minimum sufficient number of samples was identified as the first point at which the mean 

error curve changes its slope from negative to positive, at which point the curve has 

approximately converged to a steady error value. 

3.2.4.2 Sensitivity to frame-to-frame variability of color pixel density 

To investigate the sensitivity of the WFSC method to variability in CPD, we 

define the color pixel signal-to-noise ratio (cpSNR) as the ratio of the mean CPD at a 

point along a WFSC to the standard deviation of the CPD when a sequence of frames are 

acquired with all conditions held constant. In the following simulations, we used the error 

in fitting Eqn. 3-2 to the 20 experimental flow-phantom WFSCs from [2, 4] to compute a 

reference cpSNR. The mean value of cpSNR for the 20 experimental WFSCs was 

designated (cpSNR) phantom.  

Synthetic WFSCs were produced using the minimum sufficient number of 

samples identified in the previous simulations. Synthetic color pixel noise was added to 

each sample as a zero-mean Gaussian random variable with σ = m (CPD(vc) ⁄ (cpSNR) 

phantom) for integer m ≥1. For each value of m, the relative vascular quantification error 

was computed as the mean difference between the CPD at the cut-off velocity selected by 

our automated WFSC method [2] and the CPD at the optimum cut-off velocity defined by 

the cost function divided by the CPD at the optimum cut-off. Simulations were repeated 

for increasing m to search for the threshold in cpSNR = (cpSNR) phantom ⁄ m at which the 

mean vascular quantification error exceeds 5%. The 5% error goal was chosen to 

maintain the performance of the automated WFSC method [2] within no worse than half 

of the 10% error achieved by the original WFSC method [4]. 
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3.2.4.3 Comparison of methods for selecting the operating cut-off 
velocity 

We computed and compared the relative vascular quantification errors achieved 

when using four different methods for selecting the operating cut-off velocity. The first 

method, referred to as closest, selects the sampled cut-off velocity closest to the optimum 

cut-off velocity defined by the cost function. The second selection method, which 

represents an idealized version of our automated WFSC method [2], was a perfect binary 

decision (i.e., whichever of the middle or end points of the characteristic interval is 

closest to the optimum cut-off). The vascular quantification errors using these two 

methods were compared using the two one-sided test (TOST) procedure presented by 

Schuirmann [14]. The TOST is the most basic form of equivalence testing used to 

establish that the means of two data sets differ by less than a user selected tolerance. In a 

TOST, two one-sided t-tests are applied on user-defined lower (negative) and upper 

(positive) bounds on the difference in means. The two tests yield two p-values of which 

the greatest is taken as the p-value of the equivalence test. In this chapter, the user-

defined “equivalence interval” [14] was set to [-2.5, 2.5] to allow for a variation equal to 

the 5% error goal.  

In some simulated cases, we observed that the optimum cut-off velocity was 

located towards the beginning (i.e., the left end) of the characteristic interval. Therefore, 

the third selection method considered was a perfect ternary decision that chooses 

whichever of the beginning, middle, or end points of the characteristic interval is closest 

to the optimum cut-off velocity. The vascular quantification error of a perfect ternary 

decision was compared to the vascular quantification error of a perfect binary decision 

using the TOST procedure.  

The vascular quantification error using the fourth selection method, our 

previously published automatic algorithm [2], was computed and compared to the error 

using the perfect binary decision method using a TOST procedure. In addition, the 

correspondence between cut-off velocities selected using the automatic and perfect binary 

methods was evaluated by determining the number of cases in which both methods 

selected the middle of the characteristic interval, the number of cases in which both 
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methods selected the end of characteristic interval, and the number of cases in which the 

two methods selected different operating points. Finally, to evaluate the accuracy of the 

automatic algorithm at different vascular volume fractions, the vascular quantification 

error was plotted as a function of the CPD value at the optimum cut-off velocity.  

3.2.4.4 Properties of reliable characteristic intervals 

The previous WFSC simulations reported in [4] showed that the characteristic 

interval length and the minimum cut-off velocity along the interval are correlated with 

the accuracy of the CPD as an estimate of the vascular volume fraction. It was concluded 

in [4] that selection curves with intervals shorter than 2.0 mm/s or with intervals that 

begin at high cut-off velocities (> 2.0 mm/s) provide unreliable estimates of vascular 

volume fractions. Therefore, the original WFSC method was not recommended to be 

used if these conditions are not satisfied. To revisit these recommendations for the 

improved WFSC method presented in [2], a similar analysis was performed in which the 

vascular quantification error for all 2080 simulated WFSCs was plotted as a function of 

the interval length and interval minimum cut-off velocity. The vascular quantification 

error was computed as the difference between the CPD at the optimum cut-off velocity 

and the automatically selected cut-off velocity. Using these curves, we defined the 

minimum detectable interval length, the minimum interval length for reliable 

quantification (the interval length at which the quantification error is below the 5% target 

error), and the threshold for the starting cut-off velocity of an interval. The analysis was 

performed for theoretical WFSCs with no color pixel noise and synthetic WFSCs with 

the minimum acceptable cpSNR determined in Section. 3.2.4.2. 

3.3 Results 
3.3.1 Revised Mathematical Model 

The introduction of the perivascular signal component visually improved the 

ability of the model to fit flow-phantom WFSC data with sloped characteristic intervals, 

as shown in Figure 3-1. The F test indicated that the three-component model fits the flow-

phantom WFSC data significantly better than our previous two-component model (p < 

0.005). Similarly, using a log-normal distribution for the Doppler velocity estimates in 
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the intravascular compartment provided a better fit to the roll-off portion of the WFSC, as 

shown in Figure 3-1, compared to the all-Gaussian three-component model. The t-test 

showed that the means of the sum-of-squares errors using the proposed three-component 

model and the all-Gaussian three-component model were not significantly different (p > 

0.05).  

3.3.2 Performance Analysis of the WFSC Method 

3.3.2.1 Sensitivity to number of cut-off velocity samples 

The mean interval detection error continuously decreased as the number of 

samples used to generate the WFSC increased (Figure 3-3). The error started to stabilize 

between 90 and 100 samples; therefore, wall-filter selection curves should be sampled 

using at least 100 cut-off velocities to ensure robust performance of the WFSC method. 

 

Figure 3-3: The mean interval detection error (solid line) plotted as a function of the 

number of samples. Standard deviation of the error is represented by the bars. The 

minimum sufficient number of samples was identified as the first point at which the 

mean error curve changes its slope from negative to positive. 
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3.3.2.2 Sensitivity to frame-to-frame variability of color pixel density 

The value of cpSNRphantom computed from the flow-phantom image data was 74. 

The relative vascular quantification error was 3.00±5.13%, 4.59±7.52% and 

6.22±11.69\% for m = 0, m = 1, and m = 2, respectively, where increasing m 

corresponded to increasing CPD variability. The vascular quantification error exceeded 

the target 5% for m ≥ 2, making the minimum acceptable cpSNR equal to approximately 

37.  

3.3.2.3 Comparison of methods for selecting the operating cut-off 
velocity 

The vascular quantification errors using the closest (1.28 ± 2.85%) and the perfect 

binary (1.54 ± 2.96%) selection methods were equivalent (p < 0.0001) according to the 

TOST procedure. The vascular quantification errors of the perfect binary and perfect 

ternary (1.649 ± 3.078%) methods were also equivalent (p < 0.0001). These results 

indicate that limiting the cut-off velocity selection to a binary choice between the middle 

and right end of the characteristic interval is sufficient for accurate vascular 

quantification. The vascular quantification errors using the automatic algorithm (3.00 ± 

5.13%) and the perfect binary selection method were also statistically equivalent (p < 

0.0001), so investment of additional effort toward development of the automated 

algorithm is not expected to improve the vascular quantification accuracy of the WFSC 

method.  

The pie chart shown in Figure 3-4 summarizes the correspondence between 

operating cut-off velocities selected using the automatic algorithm and to the perfect 

binary selection method. Among the 1458 cases in which the ideal (perfect binary) 

selection was at the right end of the characteristic interval, the automatic algorithm 

selected the correct operating point with 73.8% accuracy (1076 of 1458 cases). Similarly, 

the automatic algorithm selected the correct operating point for 87.2% of the 627 cases in 

which the perfect binary method selected the middle of the characteristic interval. 

Therefore, the automatic algorithm selected in the correct operating point in 77.8% of the 
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overall cases. Note also that the perfect binary method selected the right end of the 

characteristic interval in almost 70% of the simulated cases. 

 

 

Figure 3-4: The correspondence between operating cut-off velocity selections using 

the automatic algorithm and the perfect binary selection method. Light gray regions 

show matching selections while dark region correspond to different selections. 

Combined correct selections represent 78% of analyzed cases. 

 

The relative vascular quantification error using the automatic algorithm decreases 

as the CPD increases (Figure 3-5). In addition, the CPD at the minimum of the cost 

function clusters around the true vascular volume fraction, Fv, which supports using the 

cost function to define the optimum cut-off velocity in these simulations. However, note 

that the variance of the CPD at the optimum cut-off velocity from the true Fv  value 

increases as Fv increases, as shown by the spread of the points along the x-axis in Figure 

3-5.  
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Figure 3-5: The relative vascular quantification error using the automatic algorithm 

as a function of the CPD value at the optimum cut-off velocity. The minimum of the 

cost function clusters around the reference vascular volume fraction, Fv. The spread 

of the points along the x-axis show that the variance of the CPD at the optimum cut-

off velocity from the true Fv value increases as Fv increases. 

3.3.2.4 Properties of reliable characteristic intervals 

The relationship between the quantification error and characteristic interval length 

is shown in Figure 3-6. For both noise-free and noise-added (at m=1) simulations, the 

quantification error decreases with increasing interval length. With the limited resolution 

provided by the 100 samples used to construct the simulated selection curves, the 

minimum detectable interval length for both cases is 1.069 mm/s. However, there were 

few cases of longer characteristic intervals (7.485 mm/s) in the noise-added simulation 

compared to the maximum interval length in the noise-free simulation of 7.307 mm/s. 

The minimum interval length for reliable quantification was 4.10 mm/s for noise-free 

simulation while an interval of 6.06 mm/s in length is required to satisfy the condition of 

reliable quantification in a noise-added signal.  



www.manaraa.com

 84 

 

Figure 3-6: Theoretical distribution of the vascular quantification error as a 

function of the interval length for: (a) noise-free and (b) noise-added simulations 

obtained from simulations of 2080 different combinations of the parameters listed in 

Table 3-1. The outcome of each simulation is shown as a separate data point. 

Figure 3-7 illustrates the sensitivity of the quantification error to the location of 

detected interval’s minimum cut-off velocity and to noise. Unlike results from previous 

analysis in [4], the quantification error appeared to be independent of the starting cut-off 

velocity of a detected interval in the noise-free simulation (Figure 3-7(a)). However, 

adding noise to the simulations resulted in a clearer relationship between the 

quantification error and the minimum cut-off velocity in detected intervals. The error 

decreases as characteristic intervals started at higher cut-off velocities up to a certain 

point (3 mm/s), as shown in Figure 3-7(b), after which the error was inconsistently very 

high or very low. It was also noted that noise-free simulations did not exhibit any 

intervals starting at cut-off velocities higher than 2.86 mm/s while intervals started at up 

to approximately 7 mm/s upon adding the noise-signal. Therefore, the threshold for the 

starting cut-off velocity of an interval is set to 3 mm/s for the more realistic case of 

existing noise.  
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Figure 3-7: Theoretical distribution of the vascular quantification error as a 

function of the minimum cut-off velocity for: (a) noise-free and (b) noise-added 

simulations obtained from simulations of 2080 different combinations of the 

parameters listed in Table 3-1. The outcome of each simulation is shown as a 

separate data point. 

3.4 Discussion 
The purpose of this work is to improve our WFSC model to produce more 

realistic synthetic data that will be used to guide the design of an online implementation. 

An online implementation of the WFSC method that is sufficiently robust for application 

to in vivo imaging, will yield the greatest benefit in scanners that are intended to be 

operated by non-specialist or time-sensitive users. In this chapter, we combined 

simulations using the revised mathematical model and the reference cut-off velocity 

provided by the cost function to elucidate relationships between flow detection 

performance and a set of different parameters (such as: number of samples in a selection 

curve, signal-to-noise ratio, operating cut-off selection method, and interval length and 

location). Understanding these relationships helped define the conditions necessary to 

ensure effective performance of an online implementation of the WFSC method.  

The key finding of this study is that addition of a third, perivascular image 

component to the mathematical model of the WFSC significantly improves the ability of 

the model to fit sloped characteristic intervals (Figure 3-1). The assumption of a log-

normal distribution for the intravascular Doppler velocity estimates also contributes to 
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the improved ability of the model to fit WFSC data obtained from flow-phantom images. 

However, similar to the original model fits in [4], the revised model was not able to 

accurately reproduce the first portion of the selection curves at which the model generally 

started at a higher CPD value and was of a higher slope than the corresponding portion in 

experimental curves. We believe that this discrepancy is caused by some additional 

processing steps that are applied by the imaging system at very low cut-off velocities 

(such as the priority processing for image display). Since this portion of the selection 

curve is not part of the characteristic interval, it was not included in the revised model for 

simplification. Therefore, the three-component model maintains the conceptual simplicity 

of our original two-component model, i.e., that color flow imaging can be understood as 

the task of discriminating between pixels from a limited number of populations. 

The number of cut-off-velocity samples in selection curves represents the 

fundamental condition for adapting the WFSC method to online processing. Analysis of 

the WFSC method using the three-component model indicates that the WFSC should be 

sampled at 100 cut-off velocities (Figure 3-3) to ensure accurate detection of the 

characteristic interval using the automated algorithm detailed in [2]. This result may pose 

a challenge to the goal of eventual real-time implementation of the WFSC method; 

however, in view of the short ensemble lengths employed during color flow imaging, a 

modest parallelization of the algorithm (e.g., evaluation of 4 or 8 cut-off frequencies in 

parallel) may be sufficient to enable real-time performance. 

The three-component model also indicates that the tolerance of the WFSC method 

to frame-to-frame variations of CPD is relatively modest: any CPD variability greater 

than twice the variability observed in the flow phantom experiments [4] is predicted to 

increase the vascular quantification error to greater than the 5% target. With the 

expectation that in vivo images exhibit more inter-frame variations than phantom images, 

we are hoping to implement the cpSNR parameter as an initial condition for applying the 

online WFSC methods to acquired in vivo data in the future. In addition, CPD variability 

can be reduced by frame averaging if necessary to enable the WFSC method to be 

applied to in vivo imaging. Therefore, the sensitivity of the algorithm to CPD variability 

may prove to be the greatest barrier to real-time implementation of the WFSC method. 
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Furthermore, the three-component model also indicates that the performance of 

the current automated WFSC algorithm is comparable to the performance expected from 

idealized implementations of the method (i.e., the perfect binary and closest methods 

considered in Section 3.2.4.3). Moreover, the percentages of correct selection whether in 

the middle or at the right-end of the detected interval (Figure 3-4) further support the 

selection-efficiency of the automatic algorithm. The conclusion that a binary choice 

between operating points at the middle and right end of a WFSC is sufficient, is 

consistent with the signal detection perspective upon which the model is based. When 

there is minimal to modest overlap of the three PDFs for the Doppler velocity estimates 

(representing an easily detected vessel), selecting an operating point cut-off velocity at 

the right end of the characteristic interval eliminates as many extra- and perivascular 

color pixels as possible while retaining most of the intravascular color pixels. On the 

other hand, when there is significant overlap among the three PDFs, the characteristic 

interval is predicted to be more steeply sloped. In this case, selecting an operating point at 

the middle of the characteristic interval maximizes discrimination between extra- and 

intravascular pixels with the compromise of retaining a substantial number of color pixels 

in the perivascular region. 

When comparing quantization accuracy using the different selection methods, we 

chose to use the TOST procedure to test for equivalence instead of the typically used 

two-sample t-test. TOST procedure overcomes the challenges of using the two-sample t-

test to test for equivalence. First, with the traditional two-sample t-test, the absence of 

substantial evidence to conclude that the mean values are different, the analyst can 

mistakenly default to the hypothesis that they are equal. Another problem associated with 

the use of the two-sample t-test is that it may lead the analyst to conclude that a 

statistically significant difference exists between the mean values when the magnitude of 

the difference is of no practical importance [15].  

Simulation results (Figures 3-6 and 3-7) demonstrate that the interval length and 

minimum cut-off velocity are related to the accuracy of CPD as an estimate of the 

vascular volume fraction. As the quantification error decreases with increasing interval 

length (Figure 3-6), the minimum interval length for reliable quantification is defined as 
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the interval length at which the quantification error becomes lower the 5%. The reason 

for the reduced error beyond this point is that longer intervals become more horizontal 

than shorter intervals and therefore, are less affected by the accuracy of selection of the 

operating cut-off velocity being in the middle or right-end of the interval. By comparing 

Figure 3-6(a) and (b), we notice some cases present in Figure 3-6(b) only, in which the 

quantification error is almost 100% (at interval length < 3 mm/s), these cases correspond 

to an error in characteristic interval detection due to the added noise. However, they do 

not affect the over all accuracy of quantification as they are at intervals lengths below the 

reliable quantification threshold. In regards to defining the threshold for the starting cut-

off velocity of a detected interval, the results of the analysis shown in Figure 3-7 did not 

provide a firm understanding of the relationship between quantification error and 

minimum cut-off velocity due to the lack of consistency between results using noise-free 

and noise-added signals. However, the inconsistent results shown in noise-added signal 

(Figure 3-7(b)) at higher cut-off velocities (> 3 mm/s) provide an understanding to the 

behavior of the interval detection algorithm [2] as the CPD variability increases. In this 

portion of Figure 3-7(b), the points corresponding to a very low quantification error (0%) 

are believed to exist as the characteristic intervals are detected starting at a higher cut-off 

velocity due to noise fluctuations in CPD value along the selection curve. On the other 

hand, the points within the same range of minimum cut-off velocity corresponding to a 

much higher quantification error (40%) could be caused by falsely detected intervals 

along the roll-off portion of the selection curves also due to noise fluctuations in CPD.  

Therefore, with the assumption that any in vivo data acquired in future 

experiments will be considered relatively noise-added signals, we can conclude from 

results in Figures 3-6 and 3-7 that selection curves with short intervals (< 6 mm/s) or with 

intervals that begin at high cut-off velocity (>3 mm/s) provide unreliable estimates of 

vascular volume fraction. Although, these conditions appear to be stricter than the 

conditions reported in our previous simulation study [4], it would be unreasonable to 

compare results from both studies for a number of reasons. First, with selection curves 

limited to 100 samples in the current study (vs. 10000 samples in [4]), each additional 

point along the curve corresponded to an increment of 0.178 mm/s, which resulted in a 

more discrete x-axis in Figures 3-6 and 3-7 and limited the results to multiples of 0.178 
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mm/s. In addition, the current analysis explored the relationship between interval length, 

minimum cut-off velocity and error in quantification for all simulated reference vascular 

volume fractions (Fv in Table 3-1) rather than analyzing it for a single color pixel density 

as in [4]. Finally, the large discrepancy between threshold values maybe attributed to the 

adjustments to both the interval detection and operating point cut-off selection algorithms 

in the improved WFSC method [2], With these reasons in mind, we believe that the 

current conditions are more reasonable to implement in an online version of WFSC 

method as they correspond to using a practically feasible number of samples to construct 

the selection curves.  

The above conclusions depend in part on the weights assigned to the cost function 

because the cost function defines the optimum cut-off velocity in this study. The weights 

were not formally validated, so the cost function is best understood as a means of making 

explicit the assumptions embedded in the WFSC method about the relative tolerability of 

false-positive color pixels in the extra- and perivascular regions. As stated in the 

Introduction (Section 3.1), the cost function was included to enable the above analyses to 

be performed without requiring time-consuming simulations to generate realistic power 

Doppler images. During the process of developing the cost function, synthetic images 

were produced using a Monte Carlo approach. These images, which were not included in 

this chapter in the interest of brevity, confirmed that the selected weights, as intended, 

define “optimum” cut-off velocities at which the majority of false-positive color pixels 

are confined to the perivascular region. 

This conceptual model of color flow imaging can be applied to tasks other than 

analyzing the selection of wall filter cut-off velocity. The model can readily be modified 

to describe the sensitivity of CPD to other Doppler acquisition parameters such as gain 

and pulse repetition frequency, with the caveat that the Gaussian PDFs assumed in the 

current model may prove less applicable to other acquisition parameters. The model also 

implies that the shape of the WFSC carries information about blood flow in the ROI, e.g., 

changes in the complexity of the vascular network can be expected to shift and perhaps 

broaden the distribution of intravascular (and possibly also the perivascular) velocity 

estimates. The success in this study of the introduction of a log-normal distribution for 
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the intravascular velocity estimates provides a hint of this possibility, particularly in view 

of the fact that, as stated in Section 3.2.1, a hemodynamic justification exists for the 

choice of a log-normal distribution. 

3.5 Conclusion 
The proposed three-component mathematical model describes the relationship 

between wall filter cut-off velocity and power Doppler CPD more accurately than our 

original two-component model. The utility of the three-component model was 

demonstrated by applying it to analyze factors affecting the performance of our 

automated WFSC method for selecting a wall filter cut-off velocity. Development of an 

online implementation of the WFSC method will be guided by insights gained from the 

three-component model. Online implementation of the WFSC method is expected to be 

valuable for systems such as preclinical scanners and portable, point-of-care scanners that 

are typically operated by inexperienced or time-sensitive users. The WFSC method is 

also expected to improve the accuracy and reproducibility of power Doppler for 

quantitative microvascular imaging by enabling the wall filter cut-off velocity to be 

adapted to spatial and temporal (i.e., longitudinal) variations in blood flow conditions. 
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Chapter 4  
4 A two-stage process to improve quantitative 

three-dimensional power Doppler angiography 
of tumor microvasculature 

 

The contents of this chapter are in preparation to be submitted to: Ultrasound in 

Medicine and Biology, as: “A two-stage process to improve quantitative three-

dimensional power Doppler angiography of tumor microvasculature,” by M. 

Elfarnawany, M. R. Lowerison, M. N. Hague, A. F. Chambers and J.C. Lacefield. 

 

4.1 Introduction 
Studying  tumor vasculature is fundamental in cancer studies due to the important 

role of blood vessels in promoting cancer growth and metastasis. Accurately depicting 

and quantifying these vascular networks is important to observe temporal changes to the 

networks during tumor development and to monitor responses of a tumor to anti-

angiogenic and anti-vascular agents [1]. Power Doppler ultrasonography is a noninvasive 

imaging modality, characterized by high spatial resolution and sensitivity to blood flow 

in small vessels, which make it particularly useful for quantitative analysis of tumor 

vasculature [2-4]. A number of three-dimensional (3-D) power Doppler quantification 

metrics were developed by Carson et al. [5, 6] to quantify breast cancer vasculature. In 

1999, Pairleitner et al., presented these metrics in their current standardized 

nomenclature: vascularity index (VI), flow index (FI), and vascularity-flow index (VFI), 

and assessed their usability and reproducibility using 3-D power Doppler images of 

human adnexal masses [7]. Thereafter, many cancer studies have used this method, often 
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termed 3-D power Doppler angiography, to visualize and quantify vasculature in tumor 

sites such as ovarian [8, 9], endometrial [10, 11] and breast cancers [12, 13].  

Despite this abundance of literature on the application of quantitative 3-D power 

Doppler ultrasound to tumor vascular imaging, there exists some hesitation in defining 

the role of these power Doppler indices in clinical practice [14]. This hesitation stems 

from uncertainty about the interpretation of these indices due to the sensitivity of power 

Doppler signals to multiple factors such as operator-dependent machine settings and the 

irregularity and complexity of the vessel networks. The two-stage process introduced in 

this chapter is intended to analyze and standardize two of these factors to strengthen the 

role of 3-D power Doppler angiography in practice. The first processing stage is a clutter 

filter tuning method to improve the quality and accuracy of the reconstructed images. The 

second stage is a post-processing method to reduce artifacts in power Doppler images 

resulting from imaging complex and dense vascular networks. 

One of the concerns with quantification of power Doppler images is its 

susceptibility to inaccuracies caused by any factor that alters the raw power Doppler 

signal, such as attenuation and operator-dependent machine settings [15]. Previous 

studies [16-18] made a significant contribution to understanding how machine settings 

such as gain, pulse repetition frequency, and wall filter cut-off frequency affect power 

Doppler quantification indices. These studies recommended choosing and maintaining 

fixed Doppler acquisition settings to provide reliable quantitative comparisons among 

subjects. Nevertheless, maintaining fixed acquisition settings may fail to achieve optimal 

performance as tumor vasculature changes with time in a longitudinal cancer study [19, 

20], which can limit the reliability of comparisons between Doppler vascular indices 

computed in the course of the study. Therefore, having an objective method to select and 

adjust Doppler acquisition settings can be valuable for quantitative studies of changing or 

unpredictable vasculature such as tumor vascular networks.  

Therefore, the first processing stage is the wall-filter selection curve (WFSC) 

method [21, 22], an operator-independent method to select the clutter filter cut-off 

frequency. A WFSC is constructed by plotting the color pixel density (CPD, equal to the 
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proportion of color pixels within a region of interest) as a function of the wall filter cut-

off frequency. Selection curves are assumed to have one or more characteristic intervals 

depending on the number of vessels in the region of interest (ROI). One of these intervals 

is hypothesized to enclose the cut-off frequency at which the resulting image most 

accurately depicts the true vascular volume fraction of the imaged vessels. The method 

provides spatial tuning of the cut-off frequency by possibly selecting different cut-off 

frequencies in different subregions of a single ROI, depending on local variations in flow 

velocity and vessel size. The WFSC method was evaluated using multiple-vessel flow 

phantoms [22, 23] and isolated testicular vessels in mice [24] and provided more accurate 

vascular quantification in comparison to images processed using a single cut-off 

frequency throughout the entire ROI.  

Another challenge for quantitative power Doppler imaging of tumor vessels is the 

inherent overestimation of moving blood volume in 3-D power Doppler images [17, 25]. 

This overestimation is usually displayed as a diffuse “blush” in regions of dense, complex 

vascular structures [26] such as the branching and tortuous vessels in a tumor vascular 

network. To reduce this overestimation and more accurately depict the vascular network 

morphology, Huang et al. [27] adopted a 3-D thinning algorithm to transform color pixel 

features in power Doppler images into sets of interconnected single-voxel-diameter 

vascular skeletons. These skeletons were used to extract vascular tree structures from the 

3-D power Doppler images. The second stage of the proposed process is an adapted 

version of the method developed in [27] that is applied as a post-processing step during 

3-D power Doppler image reconstruction.  

In this chapter, we evaluate the effect of the two-stage process on 3-D power 

Doppler angiography using a murine tumor model. The chapter reports results from the 

first in vivo evaluation of the fully automated WFSC method [22] and establishes that the 

method is applicable to power Doppler signals acquired from tumor vascular networks. 

The results demonstrate that the WFSC-selected cut-off frequency varies as a function of 

position within a 3-D ROI and the histogram of cut-off frequencies from a tumor volume 

varies as the tumor progresses, so objective tuning of the cut-off frequency using the 

WFSC method has the potential to meaningfully improve power Doppler images of 



www.manaraa.com

 96 

tumor vessels. The results also show that the proposed two-stage processing approach 

produces a small increase in the correlation of power Doppler and contrast-enhanced 

ultrasound metrics of tumor vascularity. This increase in correlation is greater using the 

two-stage method than using either stage alone, so the two processing steps (the WFSC 

method and vascular skeletonization) combine in a complementary manner. 

4.2 Materials and Methods 
4.2.1 Experimental Image Acquisition 

Three-dimensional power Doppler images were acquired using a 40 MHz linear 

array transducer (MS550D, FUJIFILM VisualSonics Inc., Toronto, Canada) and Vevo 

2100 high-frequency imaging system (FUJIFILM VisualSonics) equipped with digital RF 

mode. The same power Doppler settings were used throughout the study (frequency, 32 

MHz; power, 100%; B-mode gain, 22 dB; power Doppler gain, 30 dB; dynamic range, 65 

dB; and pulse repetition frequency, 4 kHz). In addition, 3-D nonlinear (subharmonic) 

contrast-enhanced ultrasound (CEUS) images were acquired using an MS250 linear array 

transducer transmitting with a center frequency of 18 MHz following a bolus (50 µL) tail 

vein injection of Vevo MicroMarkerTM (FUJIFILM VisualSonics) microbubble solution 

(2 × 109 microbubbles/mL). Baseline images were acquired before the injection of 

microbubbles and the enhanced images were acquired after full perfusion of the tumor 

was maintained. Images were acquired from a xenograft model (detailed in [28]) of a 

human breast cancer cell line (MDA-MB-231-D3H2-LNluc cells (Caliper LifeSciences, 

Alameda, CA)), 3 days post-implantion into the mammary fat pad of 8-week old female 

nude mice (NU/NU, Charles River Laboratories, Saint Constant, QC). During the course 

of a six-week study using 8 mice, power Doppler data were acquired three times per 

week, while nonlinear CEUS data were acquired once per week. All procedures complied 

with Canadian Council on Animal Care guidelines and were approved by the Animal Use 

Subcommittee of Western University.  
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4.2.2 The WFSC method  

The WFSC method in [22] was extended to process 3-D quadrature demodulated 

(IQ) data instead of the scan-converted images analyzed in our previous work. Use of 

unfiltered IQ data enables retrospective application of any number of wall filter cut-off 

frequencies to construct the selection curves. Power Doppler processing software was 

developed in MATLAB R2013a (The MathWorks, Inc., Natick, MA, USA). For each 

image plane of a 3-D volume, Doppler IQ data were filtered using a third-order Type I 

Chebychev IIR wall filter at 100 increments of cut-off frequency from 0.005 to 0.5 times 

the pulse repetition frequency (PRF), which was set to 4 kHz. A third-order Chebychev 

filter was selected based on the analysis in [29, 30]. Each image plane was divided into 

adjacent, non-overlapping rectangular subregions of equal dimensions using an 

automated method detailed in [22]. The smallest rectangular window that maintains CPD 

< 0.80 in all subregions is used, so the number and size of the subregions varies among 

ROIs. Color pixel densities were computed after filtering at each cut-off frequency to 

construct WFSCs for each subregion. Characteristic intervals within these WFSCs were 

automatically identified as ranges of cut-off frequency that are bounded by local maxima 

in the normalized absolute first difference of the CPD, |∆CPD|norm, using the algorithm 

detailed in [22]. One modification was made to the method in [22]  for identifying the 

functional characteristic interval (i.e., the interval used to select the operating cut-off 

frequency). Instead of simply using the leftmost interval as in the flow-phantom WFSCs, 

the functional characteristic interval in a tumor-based WFSC is defined as the interval 

enclosing the highest value of |∆CPD|norm among all detected intervals. This modification 

was necessary to deal with the higher number of detected intervals (versus two intervals 

in phantom WFSCs) resulting from the complexity of the imaged tumor vasculature. A 

rule-based decision algorithm [22]  was then applied to choose either the middle or the 

end of the functional characteristic interval as the operating cut-off frequency, thereby 

yielding potentially different cut-off frequencies for each subregion. The 2-D frames 

were reconstructed by tiling the images of each subregion processed using its selected 

cut-off frequency and then the frames were stacked to form 3-D power Doppler regions 

of interest.  
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4.2.3 Vascular network skeletonization and reconstruction  

A sequence of post-processing steps was employed to improve visualization of 3-

D vascular networks. First, a 3-D power Doppler image was converted into a 3-D binary 

image, which was subsequently processed using a sequence of morphological operations 

proposed by [27] to suppress noise and fill cavities within vessels. Using a 3×3×3 cubic 

structuring element, a sequence of two dilations, two erosions, and an opening operation 

were applied to the binary image. A vessel centerline skeleton was extracted from the 

processed binary image by applying the 3-D thinning algorithm proposed by Palagyi and 

Kuba [31]. A 3-D vessel tree was then reconstructed from the centerline skeleton by 

computing the vessel radius at each voxel along the centerlines. As proposed by [27], 

vessel radii were computed by reapplying the thinning algorithm to the 3-D power data 

and recording the maximum number of iterations required to reach the vessel centerline. 

The units for vessel radii were scaled to microns to compensate for the different voxel 

sizes in the axial, lateral and elevation directions. The power Doppler image was then 

masked using the 3-D vessel tree to generate an image with interconnected vascular 

structures and reduced color pixel clutter.  

To isolate vessels within a tumor, a 3-D mask of the tumor surface was produced 

by manual segmentation of B-mode images and applied to the processed 3-D power 

Doppler image. The segmented tumor surface also used to compute the volume of the 

tumor by multiplying the total number of the voxels in the mask by the volume of one 

voxel. 

4.2.4 Applicability of WFSC method to tumor vascular imaging  

As an initial test of the effectiveness of the WFSC method for tumor imaging, 

selection curves and the resulting reconstructed images were visually inspected to 

confirm that application of the method to tumor images yields selection curves with 

characteristic intervals that can be detected using the rule-based algorithm from [22]  and 

that the detected intervals have physically reasonable correspondence to the most 

prominent vascular structures in the images.  
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To assess the variability of the WFSC-selected cut-off frequency among 

subregions of a 3-D image, histograms of non-zero WFSC-selected cut-off frequencies 

were plotted. Our pilot study [32] indicated that two peaks (i.e., distinguishable 

distributions) should be expected in these histograms. Therefore, the number of peaks, 

the cut-off frequency at each peak, and the area under each distribution were analyzed for 

each histogram. To study the correspondence of these histogram characteristics to the 

vascular properties in a 3-D power Doppler image, segmented versions of each 3-D 

image were produced that exclusively display subregions belonging to a particular 

distribution (e.g., a low or high cut-off frequency range) in the histogram. Moreover, 

longitudinal series of cut off histograms for each tumor were examined for trends that 

could be indicative of longitudinal vascular progression. Changes in the number and 

amplitude of the histogram peaks were compared to changes in tumor volume over time 

for each animal.  

Further analysis of the histograms was performed to identify the vascular features 

common to all subregions in a segmented version of the 3-D image (low or high cut-off 

frequency image) that determine whether selected cut-off frequencies within that image 

are likely to belong to the low- or high-frequency distribution in the histogram. The 

candidate vascular features tested using the segmented (low and high cut-off) images 

were: 1) the total number of colored voxels representing the vascular volume in each 

segmented image, 2) the mean depth of vascular structures, 3) the mean radius of the 

vascular structures, and 4) the vascular length per unit volume in each segmented image, 

which was computed by dividing the total number of voxels forming the centerline 

skeleton by the total number of colored voxels in the corresponding 3-D vascular tree. 

These features were computed separately from the low- and high-cut-off versions of each 

vascular network and plotted as functions of time over the course of the longitudinal 

study. Where appropriate, the mean difference between a feature in the low- and high-

cut-off segmented images was computed and normalized with respect to the maximum 

value of the feature, computed over the course of the longitudinal study. The normalized 

mean difference was tested for significance (compared to a null hypothesis of zero 

difference) using a Student’s t-test in GraphPad Prism version 6.04 (GraphPad Software, 

La Jolla, CA, USA).  
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Finally, overall variations in the WFSC-selected cut-off frequencies were 

analyzed by performing a two-way analysis of variance (ANOVA) using GraphPad Prism 

to test for statistically significant differences in the mean cut-off frequency both 

longitudinally for each animal and across different mice.  

4.2.5 Effect of WFSC method and skeletonization on vascular network 
visualization  

The effect of the two-stage method on vascular visualization was evaluated 

qualitatively by visually comparing its reconstructed images to images processed using 

each stage in isolation and images constructed using conventional power Doppler 

processing. Four sets of images were produced for each animal at each time point. The 

first and second sets of images were produced using the WFSC method with and without 

skeletonization and vascular network reconstruction, while the third and fourth sets of 

images were generated using a fixed cut-off frequency with and without skeletonization. 

The fixed cut-off frequency was equal to the mean of the non-zero WFSC-selected cut-

offs for that image volume. For longitudinal comparisons, the fixed cut-off assigned on 

the first scanning session of the study was applied to all subsequent time points to 

emulate conventional experimental procedures. The fixed-cut-off images generated 

without applying the skeletonization algorithm represent conventional power Doppler 

system processing. 

4.2.6 Effect of WFSC method and skeletonization on vascular 
quantification  

The effect of using the WFSC method and/or the skeletonization-based vascular 

reconstruction algorithm was quantitatively analyzed by computing the standard 3-D 

power Doppler indices VI, FI, and VFI:  
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Eqn. 4-1a 

Eqn. 4-1b 

Eqn. 4-1c 

 

The denominators of the FI and VFI metrics were modified from their original 

definition in [7] by replacing the number of voxels by the total volume occupied by these 

voxels in mm3 to compensate for longitudinal variations in the voxel size when using 

differently sized Doppler ROIs at different time points throughout the study.  

From each of the four versions of the reconstructed images listed above (WFSC 

or fixed cut-off, with or without skeletonization), the VI, FI, and VFI metrics were 

computed twice, once to analyze the full vascular network in the Doppler color box and 

again for the intra-tumor vessels only. These repeated measures were performed to 

separately evaluate the sensitivity of each method to variations in overall vasculature as 

well as to intra-tumor vascular development. We assessed both the overall and intra-

tumor performance since the tumors used in this study are characterized by a peripheral 

vascularization pattern in which blood vessels are mainly confined to the tumor periphery 

[19] with expanding regions of central necrosis as the tumor grows [33-35].  

Variations in vascular quantification due to the different combinations of 

processing algorithms were analyzed by performing paired comparisons of a power 

Doppler metric (VI, FI, or VFI) for images acquired from the same mouse over the study 

period (16 to 18 time points). Comparisons were performed for the four pairs of image 

versions that differed in only one processing stage. Separate comparisons were performed 

for intra-tumor and overall vascular quantification using each Doppler metric. Paired 

Student t-tests were used with a Bonferroni correction to compute multiplicity-adjusted p 

values. From each set of comparisons, the maximum significant or minimum non-

significant p-values over all mice (n=8) were reported. 

€ 

Vascularization index =
color voxels

total voxels in ROI
,

Flow index =
sum of powers of colored voxels
volume of colored voxels (mm3 )

,

Vascularization flow index =
sum of powers of colored voxels

volume of total voxels in ROI (mm3 )



www.manaraa.com

 102 

Finally, the power Doppler VFI metric was compared to a contrast-enhanced 

ultrasound derived metric, which we called total enhancement:  

€ 

Total enhancement =
Intensities from CEUS image − Intensities from baseline image∑∑

volume of total voxels in ROI(mm3)
Eqn. 4-2 

The total enhancement (TE) metric is the mean background-subtracted intensity 

of the CEUS signal in an ROI and represents the fractional blood volume at peak 

enhancement. The mean background-subtracted intensity is typically evaluated using 2-D 

images [36, 37] but was adapted to be evaluated using 3-D contrast enhanced ultrasound 

images for direct comparison to the 3-D power Doppler images. Total enhancement was 

computed twice from each data set, once for the signal within the entire 3-D CEUS ROI 

and again from the signal within the tumor boundaries only to compare to the overall and 

intra-tumor power Doppler vascular metrics. The intra-tumor CEUS images were 

produced by applying a 3-D mask of tumor boundaries generated by manual 

segmentation of B-mode images to the 3-D contrast enhanced images. Since the contrast 

data were acquired once per week, a matching subset of the power Doppler VFI metrics 

for the same days were used in the comparisons. The VFI values from the four variations 

of processing techniques and the CEUS-derived TE metric, from all 8 mice, were 

compiled and tested for normality using the D’Agostino and Pearson omnibus normality 

test and then, depending on the normality test outcome, Pearson or non-parametric 

Spearman correlation coefficients were computed to compare the VFI in each type of 

power Doppler image to the TE. All statistical analysis was performed using GraphPad 

Prism version 6.04 (GraphPad Software, La Jolla, CA, USA). A p-value less than 0.05 

corresponded to a significant difference. 
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4.3 Results 
4.3.1 Characteristics of WFSCs for tumor images 

Consistent with our flow-phantom data (Figure 4-1(a)) [22], selection curves for 

tumor images (Figure 4-1(b)) expressed a smoothly decreasing curve that exhibited one 

or more characteristic intervals corresponding to the number of distinct distributions of 

Doppler signal power. The characteristic intervals, though not easily distinguishable by 

visually studying the selection curve, were consistently bounded between two relatively 

high values of |∆CPD|norm (crosses marking the bars in Figure 4-1). Due to the complexity 

of the imaged tumor vasculature, the number of detected intervals (marked in red in 

Figure 4-1) in a selection curve for a tumor was typically greater than in the curves 

obtained from phantoms. Using the modified criteria for identifying the functional 

characteristic interval was valuable in tumor-derived WFSCs in which the highest value 

of |∆CPD|norm was frequently observed within intervals at higher cut-off frequency ranges 

and not within the left most interval typically used in phantom-constructed WFSCs. 

Other than that modification, the algorithm to select the operating cut-off frequency (blue 

circles in Figure 4-1) that was developed using flow-phantom data in [22]  was applicable 

to WFSCs from tumors and yielded visually acceptable images.  

 

4.3.2 Histograms of WFSC-selected cut-off frequency 

For all 8 mice and all 16 time points, histograms of the cut-off frequencies 

selected for individual image volumes showed two distinct groups of subregions with 

lower and higher cut-off frequencies (Figure 4-2(a)). The mean cut-off frequency, which 

always lies between the two histogram peaks, was used to segment each 3-D image into 

versions showing subregions with low (less than the mean) cut-off (Figure 4-2(b)) and 

subregions with high (greater than the mean) cut-off (Figure 4-2(c)). Although it is 

difficult to visually differentiate the high- and low cut-off versions in a printed image, it 

was noted by examining the 3-D images from different orientations that, in comparison to 

the low-cut-off subregions, the high cut-off subregions generally represented longer 

vascular structures located along the borders of the tumors.  
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Figure 4-1: Sample WFSC curves constructed from (a) a multiple-vessel flow 

phantom and (b) an in vivo murine tumor model. The red intervals on the curves are 

the detected characteristic intervals bound by the peak values (marked by the ‘x’s) 

in the normalized first difference of CPD (|∆CPD|norm, bars). The operating cut-off 

frequencies for these two curves are marked by the blue circles at the right ends of 

the first characteristic interval. 
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Figure 4-2: Variability of WFSC-selected cut-off frequency in 3-D images. (a) 

Histogram of cut-off frequencies in a representative 3-D volume. Masked versions of 

the same 3-D image showing subregions consisting of (b) low WFSC-selected cut-off 

frequencies and (c) high WFSC-selected cut-off frequencies. 

3mm 
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4.3.3 Longitudinal variability of WFSC-selected cut-off frequency 

Comparing cut-off-frequency histograms from the same animal at different time 

points in the study reveals a trend of changes in the two peaks of the histogram (Figure 4-

3 (a-c)). As the tumors grew larger, more subregions exhibited lower cut-off frequencies, 

which caused the first peak to be consistently higher than the second peak. Figure 4-3(d) 

shows a sample trend of the changes in the total number of subregions with low and high 

cut-off frequencies (area under the low and high cut-off distributions in a histogram). in 

comparison to tumor growth. At the earlier time points, prior to the sudden increase in 

tumor volume (e.g., the first 5 data points in Figure 4-3 (d)), the image contains 

approximately equal numbers of low-and high-cut-off subregions. Starting from day 15 

(5th point on Figure 4-3 (d)) and until the end of the study (day 43), the number of the 

low-cut-off subregions consistently exceeded the number of high cut-off subregions by 

more than 20%. The same trend was observed in 7 out of 8 mice with the number of low 

cut-off subregions starting to exceed the number of high cut-off subregions by more than 

20% between day 12 and day 15 of the study.  

 

Figure 4-3: Longitudinal variations in cut-off frequency histograms as tumors grow: 

(a) Day 3 after tumor inoculation, both distributions with similar peaks. (b) Day 22, 

low cut-off distribution peak higher than high cut-off peak, (c) Day 40, difference 

between peak heights decreased. (d) Trends in number of low and high cut-off 

subregions to volume of tumor in mm3. The number of low and high cut-off 

subregions diverge at approximately day 15 coinciding with the large increase in 

tumor volume. 
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Overall, the mean WFSC-selected cut-off frequency showed significant variation 

among images acquired at different time points from each animal as well as variation 

among different mice (7 mice × 15 time points, two-way ANOVA, p < 0.0001). There 

was also a significant interaction between the animal and time point (p < 0.0001). These 

results demonstrate the potential impact of adaptively tuning the cut-off frequency during 

a longitudinal cancer study in which different animals show different vascular 

progression kinetics. 

4.3.4 Vascular features corresponding to WFSC-selected cut-off frequency 

Longitudinal trends in several vascular features were inspected to identify the 

vascular characteristic that best describes the difference between the low- and high-cut-

off frequency subregions. A sample longitudinal trend of the total number of colored 

voxels in the low- and high-cut-off subregions is shown in Figure 4-4 (a). In 7 of the 8 

animals, the number of colored voxels in the low cut-off subregions exceeded the number 

of colored voxels in the high-cut-off subregions during the middle time points of the 

study (typically between days 19 and 36), but there were similar numbers of low- and 

high-cut-off voxels at earlier and later time points of the study. Since this parameter did 

not consistently differ between the low- and high-cut-off subregions, therefore, it cannot 

possibly be the basis for an automated method and thus, was excluded from further 

analysis. The mean depths of colored voxels in the low- and high-cut-off subregions 

(Figure 4-4 (b)) were not significantly different (p = 0.5094, average normalized mean 

difference = 0.86%) at any time point. The mean vessel radius did significantly differ (p 

= 0.0010) between the low- and high-cut-off subregions, albeit with a relatively small 

average normalized mean difference of 2.3%. The vascular feature that showed the 

highest, most consistent significant difference between high- and low-cut-off subregion 

was the vascular length per unit volume (p < 0.0001, average normalized mean difference 

= 42.1%). The high-cut-off subregions had a higher vascular length per unit volume than 

the low-cut-off subregions in all mice at all time points, as illustrated by the example in 

Figure 4-4 (d). A high vascular length per unit volume corresponds to longer, more-

connected vascular structures, so the parameter reflects the morphology of the imaged 3-

D vascular network in both groups of subregions.  
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Figure 4-4: Longitudinal comparison of vascular features in the low and high-cut-

off frequency portions of the 3-D vascular network identified using the WFSC 

method. (a) The total number of colored voxels in low- and high-cut-off subregions. 

(b) The mean depth of colored voxels in low- and high-cut-off subregions. (c) The 

mean vessel radius in low- and high-cut-off subregions. (d) The length per unit 

volume of vascular structures in low- and high-cut-off subregions. 

4.3.5 Effect of WFSC method and skeletonization on vascular network 
visualization 

The effect of the skeletonization algorithm on vascular network visualization can 

be appreciated by comparing the with- and without-skeletonization images in Figure 4-5. 

The tree-like structures of the vascular network were emphasized in the images processed 

with skeletonization (Figure 4-5 (b, c, f and g)), whereas the other images (Figure 4-5 (a, 

d, e and h)) displayed blurred regions of power Doppler signal. Similarly, images 
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processed using the WFSC method depicted additional vascular structures compared to 

volumes processed using a fixed cut-off frequency. The additional vascular structures 

detected using the WFSC method typically existed within tumor boundaries (Figure 4-5 

(b versus c)). In other instances, the fixed-cut-off images overestimated the vascularity in 

the periphery of the tumor (Figure 4-5 (g versus f)). Therefore, combining the WFSC and 

skeletonization algorithms (e.g., Figure 4-5 (b and f)) provided the most improved 

depiction of the vascular network inside and in the periphery of the tumor. 

4.3.6 Effect of WFSC method and skeletonization on vascular 
quantification 

A summary of the results from individual comparisons of the vascular 

quantification metrics computed using the four different combinations of processing 

algorithms is shown in Table 4-1. The table reports each hypothesis test result in one of 

three formats. In cases where comparisons for all 8 mice showed significant differences 

in a vascular metric, the maximum p-value is reported (e.g., the results in the first two 

rows comparing images produced without and with skeletonization). When the majority, 

but not all, of mice produced significant differences in a vascular metric, the maximum 

significant p-value is reported along with the fraction, m of 8 mice, that exhibited 

significant differences in that metric. For example, in the third row of the table, 

comparing images processed using the WFSC method without skeletonization to images 

processed using a fixed cut-off frequency without skeletonization, a significant difference 

in VI for overall vasculature was observed in 6 of 8 mice. The third format is used when 

a majority of animals produced non-significant differences in a vascular metric, in which 

case, the minimum non-significant p-value is reported along with the fraction of mice that 

exhibited non-significant differences. For example, in the fourth row, comparing images 

processed using the WFSC method with skeletonization to images processed using a 

fixed cut-off frequency with skeletonization, a non-significant difference in VI for intra-

tumor vasculature was observed in 6 of 8 mice. 
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Figure 4-5: Effect of WFSC method and skeletonization algorithm on tumor 

vasculature visualization for representative tumors 1 (first row) and 2 (second row). 

Non-skeletonized images (a), (d), (e) and (h) show an undistinguishable pool of 

power Doppler signal whereas skeletonized images present a connected vascular 

network (b), (c), (f) and (g). 3-D image of tumor 1 (b) processed using WFSC 

method depicts additional vascular structures inside or on the border of the tumor 

(blue arrows) as well as better isolated vessels (green arrows) compared to image (c) 

processed using a fixed wall filter cut-off. 3-D image of tumor 2 (f) processed using 

the WFSC method provided better isolation of vessels (green arrows) compared to 

image (g) processed using a fixed wall filter cut-off. 

The first two rows of Table 4-1 show that the choice to include or omit the 

skeletonization stage produced significant differences in all three indices (VI, VFI, and 

FI) for both intra-tumor and overall vasculature. The effect of skeletonization on intra-

tumor VI and both intra-tumor and overall VFI was more consistently significant (i.e., 

lower maximum p-values) when the WFSC method was also used.  
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The third and fourth rows of Table 4-1 show that the choice to use the WFSC 

method or a fixed cut-off frequency significantly changed the value of FI for both overall 

and intra-tumor vasculature, whereas the clutter filtering strategy significantly affected 

VI and VFI for overall vasculature only. The effect of the WFSC method on overall VI 

and VFI was more consistent (i.e., more mice exhibited a significant difference and a 

lower maximum significant p value) when skeletonization was also used. 

Table 4-1: Effect of WFSC and skeletonization algorithms on power Doppler 

quantification metrics, VI, FI and VFI for overall and intra-tumor vasculature. 

    Overall Vasculature Intra-tumor Vasculature 

  VI FI VFI VI   FI VFI 
fixed cut-

off **** <0.0001 **** <0.0001 *** <0.0024 ** <0.0068 **** <0.0001 ** <0.0336 without 
vs. with 

Skeleton. WFSC **** <0.0001 **** <0.0001 **** <0.0001 *** <0.0008 **** <0.0001 ** <0.0064 

without 
skeleton. **    6 of 8  

<0.0292 ** <0.0188 **    7 of 8 
<0.0312 ns    7 of 8 

>0.1080  ** <0.0264 ns    6 of 8  
>0.1244 WFSC  

vs. fixed 
cut-off with 

skeleton. ** <0.0148 * <0.0476 ** <0.0172 ns    6 of 8  
>0.0596 **    6 of 8  

<0.0220 ns    6 of 8  
>0.0940 

 

Power Doppler VFI data for all four combinations of processing algorithms and 

the CEUS total enhancement data did not pass the D’Agostino and Pearson omnibus 

normality test (p < 0.0084 in all cases). Therefore, non-parametric Spearman correlation 

coefficients (Table 4-2) were computed. Correlation between the power Doppler VFI and 

CEUS TE was higher for intra-tumor vasculature than for overall vasculature. The four 

combinations of processing methods yielded similar correlation coefficients for intra-

tumor vasculature. For overall vasculature, the correlation coefficients were statistically 

significant only when the WFSC method was used to select the cut-off frequency. A 

slightly higher correlation was achieved by applying skeletonization to the WFSC-

processed images. 
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Table 4-2: Correlation between power Doppler and CEUS quantification for overall 

and intra-tumor vasculature. 

  Overall  
Vasculature 

Intra-tumor  
Vasculature 

  WFSC  Fixed cut-off WFSC  Fixed cut-off 

r=0.3096 r=0.2785 r=0.7344 r=0.6957 Without 
Skeletonization (p=0.0385) (p=0.0639) (p<0.0001) (p<0.0001) 

r=0.3186 r=0.2688 r=0.7219 r=0.6709 With 
Skeletonization (p=0.0329) (p=0.0742) (p<0.0001) (p<0.0001) 

 

4.4 Discussion 
The two processing algorithms (the WFSC method and vessel skeletonization) 

presented in this chapter were designed to improve visualization and quantification of 

vascular networks using 3-D power Doppler imaging. Evaluation of the two-stage 

processing approach using an in vivo murine tumor model revealed significant variations 

in selected cut-off frequency within a 3-D ROI at one time point and over the study 

duration. Applying the two stages also improved the visualization of the tumor 

vasculature and produced a small increase in the correlation of power Doppler and 

contrast enhanced ultrasound quantification metrics of the imaged vasculature.  

The first stage, the WFSC method, will have a tangible effect on vessel detection 

compared to conventional power Doppler imaging when the selected cut-off frequencies 

show significant variability within ROIs or over time. In this study, the overall significant 

variation of the mean WFSC-selected cut-off frequencies expressed by the two-way 

ANOVA (p < 0.0001) indicated that significant longitudinal and inter-subject differences 

in flow conditions exist in this tumor model and that the WFSC method is capable of 

adapting to those differences. In addition, the significant level of interaction between 

subjects and time point denoted the need for tailoring the temporal adjustment of the cut-
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off frequency to the nature of the imaged vasculature, which makes the proposal of 

developing application-dependent standardized clutter filter setting [14, 18] more difficult 

to achieve. 

Histograms were used to assess the variability of the selected cut-off frequencies 

among subregions in a 3-D image. The bi-modal nature of these histograms (Figure 4-2) 

in all animals and time points signified the importance of having different (at least two) 

cut-off frequencies for different portions of the imaged vasculature. The presence of two 

distributions denoted that selecting a single cut-off frequency for the whole region of 

interest may result in over- or underestimation of portions of the vascular network that 

belong to the other distribution. There was a clear visual distinction between images of 

the low and high cut-off subregions (Figure 4-2 (b and c)), which we hypothesize was 

based on certain anatomical or physiological features of the vasculature. However, due to 

the complexity of the tumor vascular network, it was difficult to visually identify these 

vascular features by studying images from a single time point. Hence, we analyzed 

longitudinal variations in the histogram and compared them to the vascular progression as 

tumors grew. 

The curves in Figure 4-3 (d) summarize the longitudinal changes observed in the 

two histogram peaks and distributions (Figure 4-3 (a-c)) in a quantifiable form and 

present an interesting trend that we hypothesize follows the vascular development of our 

tumor model. The approximately equal numbers of low-and high-cut-off subregions in 

the earlier time points followed by the consistently higher numbers of low cut-off 

subregions (starting at day 15 in Figure 4-3 (d)), may correspond to the presence of 

tumor-induced vessels, which are fragile and tortuous [38, 39] and thus, would fall within 

the low-cut-off frequency range. Furthermore, the point of noticeable increase in tumor 

volume, which typically occurs due to an increased vascular supply to the tumor, matches 

the point at which the numbers of subregions with low and high cut-off frequencies 

diverge.  

In addition, the correspondence between changes in the WFSC-selected cut-off 

histograms and longitudinal changes in the imaged vasculature, was confirmed using 
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quantifiable vascular features. With the WFSC method being fully automated, and 

assuming its performance depends on  specific features of the vascular structures in the 

ROI, the pertinent vascular feature is expected to show a consistent, time-independent 

relationship that is distinguishable for the low and high cut-off images. The time-

independence is an important property of the vascular feature to support the assumption 

that the longitudinal changes in the cut-off frequency histograms result from changes in 

the vasculature rather than changes in the performance of the WFSC method. To a lower 

extent, the significant mean of differences (2.3%, p=0.001) between the low and high cut-

off images using the mean radius (Figure 4-4 (c)) indicate that the size of vascular 

structures can help define the suitable cut-off frequency for an ROI. Whereas, the highest, 

most significant mean of differences (42.1%, p<0.0001) between the longitudinal trends 

of the vascular length per unit volume feature (Figure 4-4 (d)), qualifies it to be the key 

vascular feature in differentiating the cut-off frequencies for different subregions using 

the WFSC method. The approximately constant values of this feature throughout the 

study duration suggest that the low cut-off subregions consistently enclosed relatively 

shorter or more discontinuous vascular structures in comparison to high cut-off 

subregions. This discriminating factor was insensitive to observed variations in the total 

number of colored voxels (Figure 4-4 (a)) or to the number of subregions in each 

category (Figure 4-3 (d)). The significant differences in this analysis indicated that the 

low and high cut-off subregions of the vasculature were distinguishable based on the 

morphology of the vascular network primarily by the length of the vessels and to a much 

less extent by the mean radii of the analyzed vasculature.   

The ratio between the total vascular length and the total number of colored voxels 

is a modified version of the branching index (BI) proposed in [13]. Chen et al. defined the 

BI for 2-D power Doppler images as the ratio between the “perimeter” (i.e. total length) 

and the area of blood vessels. The BI reflects the morphology of vasculature by 

quantitatively describing its branching pattern. In our 3-D modified version, it was 

difficult to correlate the computed value to the branching pattern due to the complexity of 

the tumor 3-D vascular network. However, computing this metric provided the ability to 

relatively differentiate vascular network portions formed of longer, more connected 

vascular structures (larger value) from shorter, more scattered vascular components of the 
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vascular network. Accordingly, we can deduce that the length per unit volume estimate is 

one vascular feature that dictates the relationship between the color pixel density and the 

cut-off frequency in a region of interest.  

The role of the skeletonization algorithm is to extract interconnected tree-like 

structures from the pool of power Doppler signal. Although 2-D and 3-D power Doppler 

are readily used to visualize and quantify vasculature, it was reported by Park et al. [25] 

that power Doppler tends to overestimate the blood flow signal. This observation is in 

agreement with Bude et al.’s [26] statements that power Doppler images display a diffuse 

“blush” when imaging small, densely arranged vessels, which are not resolved as discrete 

vessels. These descriptions matched our non-skeletonized images (Figure 4-5 (a, d, e and 

h), which display a diffuse power signal all around the tumor with very few detectable 

vessels. This improved depiction of the vascular network helped to visually identify 

differences in the vascular network as we applied the different clutter filtering methods. 

Without skeletonization (Figure 4-5 (a, d, e and h), it was difficult to visually identify 

these differences due to the diffused power Doppler signal. This contribution of the 

skeletonization algorithm to clarify differences between images processed using the 

different clutter filtering methods was quantitatively emphasized by the difference in 

significance between the third and the forth rows of Table 4-1. 

Therefore, by studying the images processed with skeletonization, we can 

recognize the additional vascular structures in WFSC-processed images (shown by the 

blue arrows in Fig. 4-5 (b) in comparison to Fig. 4-5(c)). In subregions where the WFSC 

method selected a lower cut-off frequency than the fixed cut-off filter, the additional 

vascular structures revealed by WFSC processing produced power Doppler signals that 

were attenuated or eliminated by the fixed cut-off frequency filter (i.e., detection of these 

vessels required a cut-off frequency lower than that of the fixed clutter filter). These low 

cut-off structures were relatively short, scattered, and frequently located within tumor 

boundaries, which is consistent with the expected vascular characteristics of these tumors 

because MDA-MB-231-derived xenograft tumors are characterized by development of a 

necrotic core [33-35] and leaky, fragile neovasculature [38, 39] as described earlier. On 

the other hand, in subregions where the WFSC method selected a higher cut-off 
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frequency than the fixed cut-off, the WFSC method helped resolve regions of blurred and 

blended Doppler signal (green arrows in Figs. 4-5b and 4-5f in comparison to Figs. 4-5c 

and 4-5g, respectively) into more structured vessels or vessel branches. These structures 

were more accurately depicted using a higher cut-off frequency selected by the WFSC 

method, which reduced blooming artifacts around individual vessels. Therefore, images 

processed by combining both algorithms (e.g., Figs. 4-5b and 4-5f) provided the most 

comprehensive and realistic representation of the tumor vasculature. 

Figure 4-5 illustrates that both components of the two-stage method contribute to 

improving the visual appearance of 3-D power Doppler images. The subsequent analyses 

of the effects of the method on vascular quantification were performed to evaluate 

whether those visual improvements yield significant changes in the outcome of 

quantitative imaging studies using power Doppler. The tests of VI, FI, and VFI in Table 

4-1 were intended to assess the extent to which each processing stage, used alone and in 

combination, changes power Doppler estimates of tumor vascularity. The comparisons 

between VFI and CEUS total enhancement were intended to assess whether the changes 

to the images produced by the two-stage method improve the accuracy of tumor vascular 

quantification. 

Analysis of the individual and combined effects of the WFSC method and 

skeletonization algorithms on the three standardized quantification metrics is shown in 

Table 4-1. Skeletonization had a more significant effect on all three metrics than did the 

WFSC method (i.e., lower p-values in rows 1 and 2 versus rows 3 and 4 in Table 4-1). 

This result was expected due to the large impact of skeletonization on the 3-D power 

Doppler images as shown in Figure 4-5. The skeletonization algorithm reduced much of 

the “blush” in the power Doppler images producing very different representations of the 

vascular networks, which yielded statistically significant variations in VI, FI, and VFI. 

The cases in which skeletonization had a more significant effect on the WFSC-processed 

images in comparison to the fixed cut-off frequency images (row 2 versus row 1 for 

overall and intra-tumor VFI and intra-tumor VI in Table 4-1) may be attributed to the 

ability of the WFSC method to retain power signal from the small, slow-flow vessels that 
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are eliminated by a fixed cut-off frequency and thus increase the impact of the 

skeletonization algorithm.  

Table 4-1 also shows that the clutter filtering method (WFSC vs. fixed cut-off) 

most significantly affected FI. Since FI is the mean Doppler power in voxels containing 

moving blood, which is independent of the number of color voxels, the selected cut-off 

frequency affects primarily the power value of the detected vasculature rather than the 

detectability of vascular structures themselves. This further emphasizes the importance of 

accurately selecting the cut-off frequency that reflects the true power intensity 

distribution within a vessel which corresponds to a realistic representation of the 

distribution of red blood cell concentrations within the vessel at the time of acquisition. 

In contrast, VI and VFI are affected by the accuracy of flow detection because they 

depend on the number of colored voxels. Therefore, the weaker signals from intra-tumor 

vascular structures and the nature of the imaged tumor vasculature caused intra-tumor VI 

and VFI to often be insensitive to the choice of clutter filtering method. 

Contrast-enhanced ultrasound imaging was used to provide the gold standard in 

vivo vascularity measures to avoid the need to perform inter-modality image registration 

and correct for differences in spatial resolution and field of view. The CEUS total 

enhancement metric represents the change in mean intensity of the contrast signal from 

the baseline image to the image acquired at peak enhancement and is proportional to the 

mean microbubble density, which represents the fractional blood volume [36, 37]. The 

CEUS total enhancement metric was compared to the most similar Doppler metric, the 

VFI, which is the average Doppler power over all voxels in the ROI and can be regarded 

as an estimate of perfusion.  

Similar to comparisons reported in other studies [40], correlations between the 

CEUS and power Doppler quantification for the overall vasculature (Table 4-2) were 

expectedly not strong (significant correlations are ranked as weak according to the 

Dancey and Reidy's correlation categorization [41]). A possible explanation is the 

increased sensitivity of contrast-enhanced ultrasound over power Doppler in detecting 

microvasculature including blood capillaries, which are not in the detectable range of 
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power Doppler [40]. It can be marked from the differences between the curves in Figure 

4-6(a) that the CEUS total enhancement appeared more sensitive to the vascular 

progression of tumor-induced vasculature at week 4. Similar trends were observed in all 

mice.  

On the other hand, the strong correlation (according to [41]) between the two 

metrics when analyzing intra-tumor vasculature (Table 4-2) is understandable, since their 

longitudinal trends (Figure 4-6 (b)) continuously decreased in similar fashions after week 

2. This decrease in vasculature is consistent with the development of a necrotic core as 

the tumor grew. Necrotic cores should result in limited intra-tumor vascularity, which 

should reduce the gap between vascular detection with power Doppler and the reference 

contrast-enhanced ultrasound. A disadvantage of having limited intra-tumor vascularity 

in this tumor model is that it restricts the effect different processing combinations when 

comparing the power Doppler and CEUS quantification, which is reflected by the small 

variations in the correlation coefficients. 
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Figure 4-6: Longitudinal trends of power Doppler quantification metric: VFI using 

our two-stage process and contrast enhanced ultrasound metric: TE for (a) overall 

and (b) intra-tumor vasculature. The two metrics show weak significant correlation 

(r=0.3186, p=0.0329) for (a) overall vasculature due to rise in TE at week 4. Curves 

for intra-tumor vasculature quantification (b) are very similar with high significant 

correlation (r=0.7219, p<0.0001) of the power Doppler VFI metric to contrast 

enhanced ultrasound quantification. 

Our study had some limitations. First, it was not possible to visually validate the 

3-D images produced by the different combinations of algorithms due to the absence of a 

visual reference for the 3-D tumor vascular network. Although CEUS images were 

suitable for validation of the Doppler VFI, these images were not ideal for visual 
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validation due to the incompatible microvessel detection compared to 3-D power Doppler 

images. Second, the characteristics of the tumor model complicated the analysis of the 

subtle effects of the algorithms, especially at time points where a necrotic core was 

present. Future studies involving a simpler model would help analyze specific effects of 

the algorithms on the accuracy of depicting the imaged vasculature. Finally, the lower 

number of CEUS data sets in comparison to the power Doppler images from the same 

animal may have affected the statistical power of the correlation assessment of the 

vascular quantification. This can be avoided in the future by selecting an injection-free 

validation method that can be acquired as frequently as the power Doppler data. 

4.5 Conclusions 
This study evaluated a two-stage process to improve 3-D power Doppler 

angiography using a breast cancer xenograft model in mice. The first stage, the WFSC 

method, is effective for automated tuning of the clutter filter cut-off frequency in 

response to both differently perfused subregions within a 3-D image and to longitudinal 

vascular progression in tumors. The vascular feature that most strongly corresponds to 

the cut-off frequency selected by the WFSC method is the length per unit volume of the 

detected vessels, which is a measure of the continuity of the displayed vessels. The post-

processing stage, a 3-D vascular skeletonization method, extracts vessel trees from the 

typically overestimated blood volume depicted in a power Doppler image. 

Skeletonization reduces color pixel blush from closely spaced, unresolved microvessels. 

The WFSC method improves detection of slow-flow vessels in subregions where a low 

cut-off frequency is desirable and reduces perivascular bleeding artifacts in subregions 

where a high cut-off frequency is appropriate. Combining the two stages improves 

visualization and quantification of 3-D power Doppler images of tumor vascular 

networks in comparison to conventional Doppler processing (i.e., a fixed cut-off 

frequency and no skeletonization). The two-stage process has the potential to improve the 

accuracy and reproducibility of qualitative and quantitative studies of complex, dense 

vasculature using 3-D power Doppler angiography.  
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Chapter 5  
5 Improving microvascular depiction in three-

dimensional power Doppler ultrasound using a 
two-stage processing method 

 

The contents of this chapter are in preparation to be submitted to: IEEE 

Transactions on Medical Imaging as: “Improving microvascular depiction in three-

dimensional power Doppler ultrasound using a two-stage processing method,” by M. 

Elfarnawany, N. Govindaraju, S. Pardhan, A. Makela, P. Foster, H. S. Leong, J. C. 

Lacefield. 

 

5.1 Introduction 
Power Doppler ultrasound is a valuable imaging tool used for the evaluation and 

quantification of vascularity in a variety of applications. One category of these 

applications is flow depiction, which depends on the improved vessel detection ability of 

power Doppler in comparison to other Doppler ultrasound-based blood flow imaging 

modalities [1]. Examples of flow depiction applications of power Doppler imaging are 

studying transcranial vessel morphology [2, 3], diagnosis of carotid artery stenosis [4, 5] 

and evaluating inflammation in musculoskeletal tissue [6, 7]. 

Despite this wide range of applications, users of power Doppler image experience 

some challenges and limitations when acquiring or analyzing images of blood flow. 

These challenges include the sensitivity of the acquired signal to operator-dependent 

instrument settings and the presence of Doppler artifacts that can hinder the visualization 

or quantification of imaged vasculature [8]. The wall filter cut-off frequency is one of the 

Doppler instrument settings used to eliminate signal reflected from moving tissue or 
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vessel wall and has received a lot interest in analyzing its effect on flow information 

displayed in images. Different settings of the wall filter cut-off frequency were shown to 

affect signal intensity of flow in power Doppler images [9] and to cause severe signal 

losses that could negatively affect the assessment of vascular stenosis [10]. Likewise, 

there are a number of Doppler artifacts that may risk the accuracy of vascular depiction in 

power Doppler images such as the blooming and jail-bar artifacts. The blooming artifact 

is a bleed of color, representing detected flow, outside of the vessel boundaries and may 

cause overestimation of the vessel size [8]. The jail-bar artifact is a set of periodic colored 

vertical lines displayed across the full region-of-interest (ROI) that can obscure or reduce 

signal from some flow sources within the ROI [11]. In an attempt to overcome some of 

these challenges, we propose an original power Doppler signal processing method that 

comprises an initial stage in which the wall filter cut-off setting is automated and an 

image post-processing stage aimed at reducing some of the artifacts in the reconstructed 

power Doppler images. 

There are a few notable attempts to overcome these challenges by developing and 

improving Doppler signal processing methods. With regards to the wall filter cut-off 

setting, some investigators proposed new filter initialization techniques to existing filter 

designs [12, 13], while others developed more advanced adaptive wall filters [14, 15]. In 

2009, we proposed a different approach of tuning the wall filter cut-off setting called the 

wall filter selection curve (WFSC), which uses the relationship between the fraction of 

colored pixels in the ROI (i.e., the color pixel density, CPD) and the cut-off frequency to 

identify the optimum cut-off frequency for that ROI [16, 17]. This method was further 

developed into a fully automated, spatially tuned cut-off selection method for 3-D power 

Doppler images [18], which now represents stage 1 of the method presented in this 

chapter.  

In terms of artifact reduction and improved vascular depiction, a novel image-

processing algorithm presented in [19] helped reduce the blooming artifact in power 

Doppler images. Another example is the work presented by Lai et al. who developed a 

post-processing algorithm for three-dimensional power Doppler images to extract 

interconnected vascular networks that can potentially be used in diagnosis of breast 
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cancer [20]. Stage 2 of our proposed method is based on the work by Lai et al., but 

involves further development of the vascular network reconstruction technique. Yet, to 

our knowledge, there are no similar Doppler processing methods in literature that operate 

on both the unfiltered Doppler signal and the reconstructed power Doppler images to 

improve depiction and quantification of vasculature.  

Our proposed two-stage method has passed through a number of development and 

evaluation cycles including flow-phantom experiments [17, 18, 21] evaluation using 

isolated testicular vessels in mice [22], and using a murine breast cancer tumor 

vasculature model [23]. Due to the complexity of the tumor vasculature involved in our 

most recent in vivo evaluation of the method [23], there was a need for a simpler, easier-

to-validate model to specifically analyze the performance of method for vascular 

depiction applications. Therefore, the simple, regularly distributed vascular network of 

the chorioallantoic membrane (CAM) of ex ovo chick embryos was our model of choice 

for this study.  

In this chapter, we evaluate the potential benefit of using our two-stage power 

Doppler processing in flow depiction applications. Using the simple chicken embryo 

CAM model, and by comparing 3-D power Doppler images processed using the two-

stage method and images produced by a commercial ultrasound scanner set up by a 

licensed sonographer, we present the improved detection of smaller vessels or vessels of 

slower flow. We also show the ability of the two-stage method to reduce image artifacts 

and improve visualization of the vascular network. Finally, we show that vessel diameters 

measured using our two-stage processed images were more accurate than measurements 

made using images exported from the commercial scanner. 

5.2 Material and Methods 
5.2.1 Materials 

Fertilized White Leghorn chicken eggs were obtained from (McKinley Hatchery, 

St Mary’s, ON, Canada). Eggs were incubated for four days at 38 °C and 60% relative 

humidity in a hatcher with rotation (Sportsman hatcher, Berry Hill, cat. no. 1550HA). On 
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day 4, the eggs were removed from the incubator and transferred into an ex ovo culture 

system by placing the embryos in plastic weigh boats (VWR, cat. no. 89106-768) to 

expose the CAM and make it accessible for imaging. The ex ovo culture method was 

performed according to the protocol described in [24]. The shell-less chick embryos were 

returned to the incubator (38 °C, ~60% humidity) and were taken out to image the CAM 

vasculature on day 18. This embryonic age was chosen to carry out the experiments 

because the vascular system attains its final arrangement on day 18 [25].  

 

5.2.2 Experimental protocol 

To maintain temperature during the experiment, the embryos were placed over a 

warming pad of a water pump (T/Pump TP500, Gaymar Industries, Inc., Orchard Park, 

NY) set to 40 °C. A standard red light heating lamp was used to heat the air above the 

embryos. A total of 9 animals were used in this study. Each animal was photographed 

and imaged using power Doppler ultrasound. The embryos were allowed 2-5 minutes to 

stabilize prior to image acquisition. All procedures complied with Canadian Council on 

Animal Care guidelines. 
 

5.2.3 Image acquisition 

Photographs (2448 x 2448 pixels) of the full CAM surface were captured using an 

iPhone 5s camera (8 MP, Apple Inc, Cupertino, CA, USA). A sample photograph of a 

CAM surface is shown in Figure 1(a). The phone was placed on a custom made stage 

designed to keep the phone parallel to and at a fixed height from the CAM surface. To 

avoid light reflections on the transparent CAM surface, photographs were captured in a 

dark biosafety cabinet and a flexible USB-powered LED reading light lamp (HK126, 

XZT, Guangdong, China) was used to light the CAM surface.  

Three-dimensional (3-D) power Doppler images of the CAM vasculature were 

acquired using a 40 MHz linear array transducer (MS550D, FUJIFILM VisualSonics, 

Inc., Toronto, Canada) and Vevo 2100 high-frequency imaging system (FUJIFILM 

VisualSonics, Inc) setup to the digital RF mode. Power Doppler acquisition settings were 
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adjusted by a licensed professional sonographer (A.M.) and were fixed throughout the 

study (frequency, 40 MHz; power, 100%; B-mode gain, 22 dB; power Doppler gain, 12 

dB; dynamic range, 65 dB; pulse repetition frequency, 1 kHz; wall-filter, low). Warmed 

Aquasonic 100 ultrasound transducer gel (Parker Laboratories, Inc., NJ, USA) was 

applied to the transducer face and used for coupling between the transducer and the CAM 

surface. Drops of warmed saline were applied to the CAM surface at the CAM-transducer 

contact area as a lubricant to prevent sticking of the CAM surface to the transducer gel. 

Imaged regions of interest (ROI) were set to (lateral x axial x elevation= 13.88 x 10.00 x 

14.10 mm with an elevational spacing between B-mode planes of 0.0762 mm) and were 

selected to include clear arterial and venular branching patterns far enough from the 

embryo body to reduce reflection and motion artifacts. The 3-D power Doppler images 

were exported in the quadrature demodulated (IQ) and in the raw (i.e. processed using 

scanner software) data formats. 

 

5.2.4 Image processing  

Areas in the photographs of the CAM matching the power Doppler ROIs were 

identified by visual inspection and marked using a rectangular selection tool in ImageJ 

(U.S. National Institutes of Health, Maryland, USA). The rectangle dimensions matched 

the lateral and elevational dimensions of the power Doppler ROI. Vessels within this ROI 

were identified and classified using the centripetal ordering method of microvascular 

mapping [26]. In this method, the smallest vessels that are in contact with the capillary 

network are defined as first-order vessels, which join together into second-order vessels 

that continue to successively join into vessels of increasing orders as illustrated in Figure 

5-1(b). The type of vessels (arterial or venular) was determined by color since arterial 

CAM vessels are characterized by having a dark, deep color in comparison to venular 

vessels. 
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Figure 5-1: A sample optical photograph showing (a) the full vascular network of 

the chick embryo chorioallantoic membrane (CAM) and (b) a zoomed in version 

illustrating how first to sixth order vessels are determined using the centripetal 

ordering method of microvascular mapping. The smallest vessels, in contact with 

the capillary network, are defined as first order vessel. 

 

5.2.4.1 Optical image processing  

All image processing of the CAM photographs, summarized in the flow chart 

shown in Figure 5-2, was performed using ImageJ. Using the full view of the CAM 

surface, the scale was calibrated using the reference dimensions of the plastic weigh boats 

holding the embryos (8.9 cm x 8.9 cm). Images were then cropped keeping only the 

region within the rectangular ROI boundaries (Figure 5-2(b)). The following three 

processing steps were adapted from the image-processing algorithm presented in [27] to 

detect small vessels in a CAM optical image. Each image was split into its RGB channels 
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and only the green channel, in which the vessels had the highest contrast and were most 

continuous, was used. In order to enhance the image contrast, histogram equalization of 

the green intensities was applied (Figure 5-2(c)). Vessels edges were enhanced by 

applying a Laplacian of a Gaussian (LoG) filter [28], which improved the detection of 

smaller vessels in comparison to the original unfiltered image (Figure 5-2(d)). The 

Laplacian of a Gaussian filter is useful for detecting edges that appear at various image 

scales and degrees of image focus. Images were filtered using a LoG filter ImageJ macro 

developed by Dimiter Prodamov [29] by setting the kernel size to 10.  

Additional processing to the steps proposed in [27] were required to reach the 

final images used for further analysis. Filtered images were binarized using Shanbhag 

thresholding method [30]. Gaps or holes in the vessels were filled by applying the 

“Remove Outliers" embedded function in ImageJ to dark pixels using a radius of 5 and a 

threshold of 50. The same function was used to remove background noise by applying it 

to bright pixels and setting the parameters to radius = 3 and threshold = 0. The 

“despeckle” embedded function was then applied to reduce the noise caused by very 

small vessels and capillaries and improve vessel-boundary depiction. A sample of the 

final binary images after hole filling and noise-reduction is shown in Figure 5-2(e). 

 

5.2.4.2 Power Doppler processing  

Power Doppler quadrature demodulated (IQ) data were processed using software 

implemented in MATLAB R2013a (The MathWorks, Inc., MA, USA) to apply the two-

stage method presented in [23]. The first stage, the wall filter selection curve (WFSC) 

method, is an automatic, spatially tuned wall filter cut-off frequency selection algorithm. 

Each image plane of a 3-D volume is divided into adjacent, non-overlapping rectangular 

subregions of equal dimensions using an automated method detailed in [18]. 
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Figure 5-2: CAM optical image processing method with samples of results obtained 

at different stages of processing starting from (b) the unprocessed RGB image then 

showing the improved contrast image (c) after applying contrast enhancement to the 

green channel and (d) detected vessels using the Laplacian of Gaussian (LoG) filter 

and the final binary image (e) after filling holes and removing noise. 

The number of subregions per ROI depends on the vascular density in the ROI 

because the algorithm uses the smallest subregion that contains no more than 80% 

colored pixels everywhere in the ROI. The WFSCs for these subregions are constructed 

by plotting the color pixel densities computed using 100 high-pass filtered version of the 

frame; each at an increment of cut-off frequency between 0.005 to 0.5 times the pulse 
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repetition frequency (PRF), which was set to 1 kHz. A third-order Chebychev high-pass 

filter was used based on the analysis in [13, 31]. Characteristic intervals within these 

WFSCs are automatically identified as ranges of cut-off frequency that are bounded by 

local maxima in the normalized absolute first difference of the CPD, |∆CPD|norm, using 

the algorithm detailed in [18]. In cases where multiple characteristic intervals are 

detected, the interval closest to the location of the maximum |∆CPD|norm is used to select 

the operating cut-off frequency for each subregion. The frames are reconstructed by tiling 

the images of each subregion processed using its selected cut-off frequency. Stacking the 

reconstructed and spatially tuned versions of the frames then forms power Doppler three-

dimensional volumes of regions of interest.  

Stage 2 is an image post-processing algorithm used to extract interconnected tree-

like structures from the pool of power Doppler signal. Extracting only connected vascular 

structures helps reduce common motion and flash artifacts in power Doppler images as 

well as the diffuse power Doppler signal “blush” resulting from imaging small, numerous 

vessels that are not depicted as discrete vessels. The “blush” in power Doppler images 

has been reported in many studies [32, 33] to cause an overestimation of the blood flow 

signal. Extracting the interconnected vessels is accomplished by applying the 3-D six-sub 

iteration thinning algorithm proposed by Palagyi and Kuba [34] to construct centerline 

skeletons of the vascular structures in the ROI. Using the generated centerline skeletons 

as a reference, we were able to capture the structural information (e.g. vessel radii, 

branches) of the connected blood vessels by reapplying the thinning algorithm to the 3-D 

power data and recording the number of iterations required to reach each voxel of the 

skeleton from all six directions. The computed number of iterations are then used to 

determine the number of voxels adjacent to each voxel of the centerline skeleton, in each 

of the six directions, to be filled with color and thus, reconstruct a full 3-D vascular 

network from the skeletons. Finally, the power Doppler image is masked using the 3-D 

vessel tree to generate power-weighted 3-D vessel structures with reduced color voxel 

artifacts.  
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5.2.4.3 Maximum intensity projection images  

Maximum intensity projection (MIP) images of the 3-D Doppler images, in the 

lateral-elevation (i.e., C-mode) plane, were produced to provide a comparable depiction 

of the vessel network to that in the optical photographs. Two sets of power Doppler MIPs 

were produced from each dataset, one using the exported raw (processed using the 

scanner software) 3-D images and the other using images processed using our two-stage 

method. The MIPs present a satisfactory depiction of the vascular network captured in the 

optical images due to the two-dimensional monolayer characteristic of the CAM vessel 

network [35]. The power Doppler MIPs were scaled for measurements using the known 

ROI dimensions (13.88×14.10 mm).  
 

5.2.5 Data analysis 

5.2.5.1 Vessel detection 

Improvement in visualization of vascular structures was assessed by comparing 2-

D and 3-D images of the vascular networks processed using our two-stage method to 

exported raw images processed using the Vevo 2100 scanner software. The numbers, 

types and orders of vessels depicted in our processed images only and not in the raw 

images were recorded for further analysis. 

5.2.5.2 Level of striping artifact 

The main artifact displayed in our 3-D images was a consistent stripe-like artifact 

parallel to the elevation direction. This type of striping artifact in the 3-D view can result 

from jail-bar artifacts in individual 2-D frames, which result from misinterpolation of 

Doppler signal in the presence of a strong reflector [11]. The strong reflector in this case 

is the floor of the weigh boat holding the chick embryo and its surrounding fluid. The 

amount of artifact in the images was quantified by computing the average number of 

colored voxels in each elevation line. A large value indicates the presence of more stripes 

in the 3-D image. These values were compared between 3-D images produced using our 

proposed method and the scanner’s processing method.  
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5.2.5.3 Accuracy of diameter measurement 

The number and size of pixels in the optical and Doppler images were matched 

using resize option in ImageJ. Diameters of the previously identified and labeled vessels 

were measured in millimeters using the line segment selection tool. Three diameter 

measurements were made at different points along each vessel segment to estimate the 

mean vessel diameter. Vessel diameters for 83 vessels of different types and sizes were 

computed from Doppler MIPs (raw and two-stage-method processed) and were compared 

using corresponding measurements from the optical photographs as a reference. The 

reference measurements from optical photographs were compared to similar estimates 

from the literature of diameter ranges for the studied vessel orders in the chick CAM. 
 

5.2.6 Statistical analysis 

The level of striping artifact in the produced 3-D images was compared using 

multiple Student’s t-tests corrected using the Sidak-Bonferroni method. The overall 

change in the level of artifact between the two processing methods was expressed by the 

mean and standard deviation (over the nine CAMs) of the percentage difference of the 

amount of artifact by the two methods in each animal.    

The linear dependence between diameter measurements from images processed 

using either Doppler processing software and measurements from the reference optical 

photographs were expressed by computing Pearson correlation coefficients. The Steiger’s 

Z-test for “correlated correlations” within a population was used to test the correlation 

coefficient difference [36]. The accuracy of diameter measurements was evaluated by 

computing the percent error in measurements using the reference optical photographs. 

Since these errors were not part of a normal distribution (D’Agostino and Pearson 

omnibus normality test, p<0.0001), an overall estimate of accuracy for each processing 

method was computed as the median absolute percentage error (MAPE) over all vessel 

measurements. In addition, pairs of percent errors resulting from the two processing 

techniques were compared using a Wilcoxon matched-pairs signed rank test for statistical 

significance. Finally, the histogram of all percent errors by each processing method was 

plotted to analyze the range and frequency of obtained errors.  
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The same analysis steps: computing the MAPE, testing for statistical significance 

using the Wilcoxon matched-pair signed rank test and plotting the histogram of percent 

errors, were repeated after dividing the set of vessel measurements based on the vessel 

type (arteries or veins). This analysis was performed to get more insight on the 

relationship between vessel type and the performance of the two processing methods and 

their role in reducing or exaggerating diameter estimation errors.  

A more in-depth evaluation of the diameter measurement accuracy was performed 

by categorizing the evaluated vessels based on type and vessel order and comparing the 

ranges of percentage errors (minimum to maximum) for each category between the two 

processing techniques. All statistical analysis was performed using GraphPad Prism 

version 6.04 (GraphPad Software, La Jolla, CA, USA) except for the Steiger’s Z-test, 

which was performed using computer software by Lee and Preacher [37]. P values less 

than 0.05 were considered statistically significant. 

 

5.3 Results 
 

5.3.1 Vessel detection and visualization 

Processing power Doppler data using our proposed two-stage method often 

improved detection of vessels within individual 2-D frames. For example, two small 

vessels (marked with white arrows in Figure 5-3(b) were depicted with moderate power 

in the frame processed using the two-stage method and were not depicted in the 

corresponding frame (within the white oval boundaries) exported from the commercial 

Vevo 2100 scanner Figure 5-3(a).   

Another observed improvement in the visualization of vessels processed using our 

two-stage method is strengthening the power Doppler signal intensity of vessels that were 

depicted in the commercial scanner processed frame with a weak, single color hue 

display (vessels marked with white arrows in Figure 5-3 (c and d). These vessels appear 
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with a stronger, gradual change in power with the highest power at the centre of the 

vessels and decreasing towards the vessel wall, which matches the power profile depicted 

in the larger vessels within the frame.  

 

Figure 5-3: Improved vessel detection and visualization in images processed using 

our two-stage method versus commercial scanner (Vevo 2100) processed images. 

Sample comparisons show extra vessels (marked by white arrows) in (b) not 

detected in (a) and vessels (marked by white arrows) in (d) displaying improved 

signal intensity distribution within vessels versus being depicted as a single intensity 

(c). Color scale of all images has a dynamic range of 65dB. 

 

2mm 
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The combination of the WFSC and skeletonization methods allowed the detection 

of some vessels that were not detected in the scanner-exported images, which are 

summarized according to their number, type and order in Table 5-1. The smallest 

detected vessels were fourth-order veins which were the only fourth-order vessels 

detected in all images. The majority of the vessels (a total of 8) detected only after 

applying the two-stage processing were of fifth order, which is the vessel size for which 

only one venular vessel was commonly detected in the Vevo2100 and the two-stage 

processed images.  Conversely, there were no vessels detected in the Vevo2100 exported 

images and not in the two-stage processed images. The number of vessels of each vessel 

order detected by both processing methods (two-stage method and Vevo 2100 

processing) is reported later in Table 5-2. 

Table 5-1: Number and sizes of vessels depicted in two-stage processed images only. 

Vessel order Number of detected vessels 

 Arteries Veins 

4 0 2 

5 5 3 

6 1 0 

 

Examples of vessels revealed by the two-stage processing are the vessel branches 

(marked with blue arrows in Figure 5-4(b)) are not seen in the corresponding 3-D images 

exported from the Vevo 2100 scanner (Figure 5-4(a)). In other cases, the improved 

visualization produced by the two-stage method helped extract vessels that were 

otherwise obscured by image artifacts. An example for this type of improved 

visualization is illustrated in Figure 5-4 (c and d) by the vessels marked by the blue 

arrows.  
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Figure 5-4: Improved vessel detection and visualization in 3-D images processed 

using our two-stage method versus commercial scanner (Vevo 2100) processed 

images showing extra branches of vessels (marked by blue arrows) in (b) and (d) not 

displayed in (a) and (c), respectively. 

 

5.3.2 Level of striping artifact 

Quantifying the striping artifact using the average number of colored voxels in 

each elevation line was consistent with the level of artifact observed by visual inspection. 

The variation in the amount of artifact between animals is expressed as the mean ± 95 

5mm 
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confidence interval as shown in Figure 5-5(a). Animals with a low level of artifact (e.g. 

CAM B) had fewer stripes, as seen in Figure 5-5(b), whereas CAM D, shown in Figure 5-

5(d), represents an example of a high level of artifact with the stripes obscuring almost 

the full vascular network. For each individual animal, regardless of whether the Vevo 

2100 images had a low or high level of artifact, our proposed two-stage method resulted 

in a significantly lower level of artifact (p<0.0001 for all 9 animals) than the artifact level 

quantified in the Vevo 2100 images (Figure 5-5(a)).  

In cases of low artifact (CAM B, Figure 5-5 (b and c)), the reduction of the 

artifact using the two-stage method (Figure 5-5(c)) did not cause loss of signal from any 

of the vessels depicted in the commercial system images (Figure 5-5(b)). Overall, using 

the two-stage method reduced the amount of artifact in all analyzed animals by 52.4 ± 

13.5%. 

5.3.3 Accuracy of diameter measurement 

Mean diameter measurements for each vessel order from the optical photographs 

were all within the ranges from data reported in literature as summarized in Table 5-2. 

The ranges of vessel diameters were extrapolated from reported ranges of first-, second- 

and third-order vessels (40-60, 70-90, 90-140 µm respectively) in [38] using the 

assumption that a lower order vessel would have a diameter 71% of its parent (higher 

order) vessel to achieve most efficient blood flow [39]. The extrapolated ranges were 

validated by taking sample full arterial trees (starting from the main artery to the smallest 

measurable branch) and confirming that each vessel order was within its corresponding 

diameter range. Although the lowest measurable vessel order from the optical images was 

commonly the third order, we only included measurements starting from the fifth order 

(200 - 280 µm) since this was the minimum detectable vessel order in images from both 

Doppler processing methods.  
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Figure 5-5: Quantified level of artifact from images processed using the two-stage 

method versus the commercial scanner (Vevo 2100) software for different animals. 

Images from a sample animal displaying a relatively low level of artifact (CAM B in 

(a)) show a reduction in sizes of vessels in (c) versus (b), which may indicate reduced 

blooming artifacts. Images from an animal with a relatively high level of artifact 

(CAM D in (a)) show a much-improved visualization of the vascular network when 

processed using our two-stage method (e) versus images exported from the scanner 

(d).  

5mm 
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Table 5-2: The number and mean diameter measurements of vessels of different 

orders used in this study.  

 

Vessel 

order 
Arteries Veins 

Diameter Range 

(µm) 

 # of vessels 
mean diameter 

± SEM (µm) 
# of vessels 

mean diameter  

± SEM (µm) 
 

4 0 N/A 0 N/A 140-200 

5 0 N/A n=1 209.0 200-280 

6 n=10 367.1 ± 82.1 n=18 361.8 ± 45.6 280-390 

7 n=11 448.0 ± 61.3 n=20 458.4 ± 54.0 390-550 

8 n=3 514.0 ± 43.6 n=14 605.3 ± 69.0 550-780 

9 n=2 656.5 ± 14.5 n=4 885.0 ± 70.8 780-1098 

* all diameter ranges calculated using diameter ranges from first to third orders vessels from [38] and the 

rule for diameter fractions between different orders from [39]. 

Diameter measurements using both Doppler methods were highly correlated with 

measurements from the optical photographs of the CAM. Measurements using images 

processed using our two-stage method showed slightly higher correlation (r=0.82, 

p<0.0001) than measurements from the Vevo 2100 exported images (r=0.73, p<0.0001) 

and the correlation coefficients were significantly different (p<0.026) using Steiger’s Z-

test. 

In terms of overall diameter measurement accuracy, the two-stage method had a 

median absolute percentage error (MAPE) of 10.39%, which is almost half the MAPE 

computed from exported Vevo 2100 images of 28.18%. Errors computed by applying the 

two different processing methods were significantly different over all 83 vessel 

measurements (p<0.001). The distribution of these errors is illustrated by the histogram 
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in Figure 5-6. It is clear from the histogram that both methods resulted in some over- and 

underestimations of vessel diameters with more occurrences of overestimation than 

underestimation. Nevertheless, the distribution of errors using the two-stage method 

exhibits a narrow peak at 0% and a lower histogram tail at large positive error, indicating 

that applying the method frequently resulted in a more accurate estimate of the vessel 

diameter. In contrast, the histogram of errors resulting from images processed using 

commercial scanner software (Vevo 2100) had a wider peak centered at approximately 

30% indicating the tendency of the images to depict blurred vessel boundaries that lead to 

overestimation of vessel diameters. 
 
 

 

Figure 5-6: Comparison of the distributions of diameter measurement percentage 

errors from all 83 vessels used in this study from images processed using the two-

stage method versus exported images from the commercial scanner (Vevo 2100). 
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When analyzing the performance of the two methods based on the type of vessel, 

the two-stage method resulted in lower MAPE estimates than Vevo 2100 processing for 

both arteries and veins (8.95% versus 30.55% and 11.07% versus 23.61%, respectively). 

The errors computed from 26 arteries and 57 veins were statistically significant 

(p<0.0001 for each vessel type). The distribution of these errors is demonstrated by the 

histograms in Figure 5-7. Both types of vessels show similar ranges of overestimation 

and underestimation of vessel diameters using the two processing methods. However, the 

difference between the positions of the histogram peaks for the two methods appears to 

be dependent on the vessel type. For veins (Figure 5-7(b)), the shapes of the error 

histograms and the position of their peaks (close to 0%) are very similar whereas, for 

arteries (Figure 5-7(a)), the error distribution using the two-stage method appears to be 

centered at 0% while the peak of the distribution using Vevo2100 images appears shifted 

towards 30%.  

The evaluation of the performance of the processing methods based on different 

vessel types and orders is illustrated in Figure 5-8. The improved accuracy provided by 

the two-stage method versus the commercial scanner processing, which was previously 

expressed in the overall mean errors, can still be observed for the different vessel orders 

as shown by the smaller ranges of error (length of the boxes) and lower median errors 

(midlines of the boxes) in Figure 5-8. In terms of variations based on vessel size, it can be 

observed that, for veins, the error decreases as the vessel diameter increases (i.e. as the 

vessel order increases). In addition, for larger vessels (order 8 arteries, order 8 and 9 

veins), it is noticed that a larger fraction of the plots extend below the 0% line, indicating 

an underestimation of diameters. Images processed using the two-stage method appear to 

experience this underestimation more prominently than the exported Vevo 2100 images. 
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Figure 5-7: Separate comparisons of the distributions of diameter measurement 

percentage errors for (a) arteries and (b) veins from images processed using the 

two-stage method versus exported images from the commercial scanner (Vevo 

2100).  
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Figure 5-8: Box plot evaluation of the performance of the two-stage methods versus 

the commercial scanner (Vevo 2100) processing based on different vessel types and 

orders. For each vessel order, the whiskers display the minimum to maximum 

percentage error and the line within each box corresponds to the median error. 

 

5.4 Discussion 
The performance of the previously developed two-stage Doppler processing 

method [23] is evaluated for the use in vascular flow depiction applications by analyzing 

its effect on vessel detection, artifact reduction and diameter measurement accuracy. The 

chicken embryo chorioallantoic membrane (CAM) model, which is characterized by its 

simple, regularly distributed vascular network, was specifically selected for this study to 

allow more in-depth analysis of the proposed method and to provide a straightforward 

reference for validation using the optical images of the CAM.  

The two-stage method improved detection of vessels that required a lower cut-off 

frequency than the optimum frequency for large vessels within the same frame. For 

example, the subregion enclosing the two vessels marked by white arrows in Figure 5-

3(b) was automatically assigned a cut-off frequency of 0.06fmax (where fmax= 0.5PRF), 
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whereas the subregion enclosing the larger vessel was assigned a higher cut-off frequency 

of 0.39fmax. This was achieved by the spatial tuning of the cut-off frequency provided by 

the wall filter selection curve method based on the Doppler signal characteristics of 

vessels within the subregion. In other cases, the spatial tuning of the cut-off frequency 

helped improve the signal strength of successfully detected vessels such as the vessels 

marked by the white arrows in the lower panels (c and d) of Figure 5-3. The subregions 

enclosing these vessels were assigned lower cut-off frequencies (0.25fmax and 0.28fmax) 

than the cut-off frequency assigned to the subregion enclosing the bigger vessels 

(0.87fmax). In this case, the lower cut-off frequency improved the power signal profile by 

increasing the sensitivity to signal variations within individual vessels, which is displayed 

as the gradual change of color within the vessels shown in Figure 5-3(d) instead of a 

single color corresponding to weak signal intensity (Figure 5-3(c)). The gradual decrease 

in signal intensity from the center of the vessel to the vessel walls has been reported in 

other studies to be a property of the power signal at a suitable gain setting [19]. 

Analyzing and understanding the relationship between the shape of the WFSCs and the 

type, velocity and signal intensity profile of blood flow within vessels enclosed in the 

corresponding subregion is a potential topic for further investigation.  

By comparing vessel orders that were detected solely in images processed using 

the two-stage method and vessels that were common to the two sets of images (Tables 5-

1 and 5-2), it is evident that the two-stage method allowed the detection of one vessel 

order lower than what was detected using the commercial scanner software. This may 

indicate that the proposed processing method improved the detection range of power 

Doppler mode using the Vevo 2100 scanner from vessels of diameters > 200 µm to 

vessels as small as 140 µm.  

The improved detection of vessels in the 2-D frames was also translated to the 

overall 3-D view of the vessel network (Figure 5-4). The spatial tuning provided by the 

WFSC had the bigger role in depicting vessels that were not shown on the commercial 

scanner images (Figure 5-4 (a and b)), whereas the 3-D skeletonization method was 

particularly useful for extracting continuous vessel segments from artifact-obscured areas 

within the 3-D image (Figure 5-4(c and d)), resulting in an overall improvement in vessel 
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depiction. An additional advantage of the spatial tuning provided by the WFSC method is 

the reduction of blooming artifact (illustrated by the reduced diameters of vessels in 

Figures 5-4(b) and 5-5(b) in vessels for which the single cut-off frequency used in the 

Vevo 2100 images may be lower than the optimum cut-off, causing the exaggerated 

diameter as color bleeds outside the vessel. This assumption is later validated by the 

higher accuracy of diameter measurements (Section 5.3.3) from images processed using 

the two-stage method in comparison to images exported from the commercial scanner.  

The main artifact in all Doppler images in this study is the jail-bar artifact. This 

artifact is known to be directly linked to the presence of a strong reflector in the range of 

the penetration depth provided by the imaging system [40]. The strong reflector signals 

result in saturation of some lines in the ROI, resulting in the appearance of stripes. The 

continuity of the jail-bar stripes along the elevation axis of 3-D image may be resulting 

from vibrations of the 3-D motor while stepping the transducer through the imaged 

volume. The jail-bar artifact is not typically reported as a common power Doppler artifact 

due to the specific setup needed for it to exist. However, Martins et al. reported the 

existence of vertical lines in power Doppler images of a water tank that disappeared when 

a 2 cm piece of bovine tissue was placed on the base of the tank causing attenuation of 

the reflected signals [40]. Another factor that may contribute to the severity of this 

artifact in the images is the nature of the CAM microcirculation. The CAM is 

characterized by having a superficial, very dense capillary mesh, which is supplied and 

drained by free-floating medium and large vessels [41]. Due to the limited resolution of 

ultrasound system, this capillary mesh would not be resolved and would appear as a blush 

of power signal above the vascular network, such as the obscuring layer of colored pixels 

illustrated in the lower panels (c and d) of Figure 5-5.  

Using the average number of colored voxels in each elevation line within a 3-D 

image to quantify the image artifact was inspired by the work of Jamzad et al. [42], who 

used a similar approach to quantify twinkling artifacts in color Doppler images. In the 

case, as the number of stripes within an image increased, more elevation lines were 

almost fully formed of colored voxels, which shifted the mean number of colored voxels 

to a higher value indicating a high level of artifact.  
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The artifact-reduction effect of the two-stage method was particularly useful in 

images with high levels of artifact, such as the images of CAM D (Figure 5-5 (c and d). 

Each of the two components of the method contributed in reducing these artifacts. The 

WFSC method helps by eliminating signals in subregions that do not form a meaningful 

selection curve (i.e., a curve in which the CPD decreases gradually with increasing cut-

off frequency) corresponding to the absence of the gradually changing power profile 

(illustrated in Figure 5-3) typically displayed for blood vessels in subregions enclosing 

these artifacts. Likewise, since the stripes do not form a connected 3-D structure similar 

to the vessel segments, the 3-D skeletonization method is able to discard most of them. 

resulting in an improved view of the vascular network such as the one shown in Figure 5-

5(d).  

The improved vessel detection and artifact (blooming and jail-bar) reduction 

using the two-stage method can be considered the key factors in improving the overall 

correlation and accuracy of diameter measurements to the reference optical images. The 

few over- and underestimations of the vessel diameter (shown by the end points of the 

histograms in Figure 5-6) may be attributed to the different resolutions in the three main 

directions (axial: 40 µm, lateral: 80 µm [43], and elevation: 180 µm based on an 

elevation f-number of 4.7 [44]), which affects the accuracy of the measurements 

depending on the orientation of the vessel. Similar reports of the inaccuracy of diameter 

measurements using different view windows of the vessels due to the different 

resolutions in Doppler images were found in the literature [45, 46]. Understanding the 

extent and effect of these resolution differences on the performance of the proposed two-

stage method may be further investigated using the CAM microvasculature.  

In addition to the improved overall accuracy of diameter measurements, having 

the peak of the two-stage method’s histogram of estimation errors centered at 0% with a 

relatively narrow range (Figure 5-6) is a very good indication of its potential to reduce 

the consistently reported overestimation of power Doppler diameter measurements in 

clinical or preclinical studies [47, 48]. This frequently reported overestimation is 

expressed in the histogram of Vevo 2100 data by the shifted peak of the distribution at 

30%. In this study, this error shift may have resulted from the need of the licensed 
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sonographer to select a relatively low cut-off frequency (causing more blooming in big 

vessels) to maintain signals from weak vessels, which were obscured by the strong 

reflections from the base, instead of losing their signal by applying a higher cut-off. This 

assumption is further supported by the differences between the error distributions in 

arteries and veins. As shown in Figure 5-7, the performance of the two processing 

methods is more similar in the case of measurements from venular networks (Figure 5-

7(b)), while the histogram of errors from arterial network (Figure 5-7(a)) resembles the 

overall error histogram. This distinction between the methods’ error distributions for 

arteries versus veins can be due to the pulsatile nature of the arteries that results in 

varying representations of a vessel diameter depending on the time point during the 

cardiac cycle at which a frame was acquired. These varying representations of vessel 

diameter would result in overestimation or underestimation of the diameter measurement 

depending on the wall filter cut-off setting in a typical instrument processing software 

and therefore, would particularly benefit from tuning the wall filter cut-off frequency 

based on their flow properties in the processed image. Therefore, the two-stage method 

can be of more value in studies involving measurements of the arterial network.  

The deeper analysis of the methods’ performance for vessels of different type and 

size is helpful for understanding the abstract performance measures represented by the 

MAPE and the error distributions discussed earlier. The inverse relationship between the 

amount of error and vessel size (Figure 5-8) is expected, since diameter measurements of 

smaller vessels require higher resolution and accuracy and thus can suffer from 

overestimation more frequently. This is a customary observation in studies that use power 

Doppler to measure different levels of stenosis and report that the measurement accuracy 

decreases with stenosis severity (i.e. smaller diameters) [4, 49]. On the other hand, the 

consistent underestimation of larger vessel diameters (order 8 arteries, order 8 & 9 veins 

in Figure 5-8) may reflect a tendency of the two-stage method to select a higher than 

optimum cut-off frequency in cases when the velocity in the vessels is very high such that 

the WFSC curve extends to a value close to the system’s maximum velocity limit (fmax = 

0.5PRF) without the CPD decreasing to zero. This may affect the efficacy of the WFSC 

method to accurately define the end point of the characteristic interval and, accordingly, 

the optimum cut-off selection. Further analysis of the performance of the method with 
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larger, fast flow vessels and attempting to use different PRFs to match flow velocities 

within different subregions of the image may improve the accuracy of the cut-off 

selection. Finally, the consistently lower median error and smaller range of errors using 

the two-stage method for all studied vessel types and sizes is a strong indication of the 

potential of the proposed processing method to improve the accuracy of microvascular 

diameter measurements using 3-D power Doppler.  

5.5 Conclusion 
We presented a new power Doppler signal processing method that involves an 

automated, spatially tuned selection of the wall filter cut-off frequency instrument setting 

and an image post-processing algorithm to extract 3-D vascular networks. We evaluated 

the method’s performance using a chick embryo CAM model. In comparison to images 

processed using commercial scanner software, the method showed improved depiction 

and detection of vessels in 2-D and 3-D images. It helped reduce the level of artifact in 

the images allowing improved visualization of the imaged vasculature. Most importantly, 

it increased the accuracy of diameter measurements for arterial and venous vessels of 

different sizes. Overall, the proposed method shows promising results for improving the 

usability of 3-D power Doppler imaging in flow depiction applications such as 

assessment of stenotic structures or analyzing the morphology of a 3-D vascular network.  
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Chapter 6  
6 Summary and Future Work 

6.1 Summary 
Vascular imaging and quantification, typically called angiography, is becoming a 

core need for almost all clinical and research application involving pathology diagnosis, 

treatment and surgical interventions. Ultrasound stands its position as a valuable vascular 

imaging technique with its low cost, lack of ionizing radiation and being the non- 

invasive. Doppler ultrasound flow imaging techniques provide a wealth of information 

about vascular characteristics that can be presented using a number of different display 

modes. Power Doppler is characterized by its ability to image small vessels with slow 

flow, which makes it particularly useful as a vascular quantification tool. However, the 

sensitivity to operator-dependent instrument settings and the likelihood of image artifacts 

are challenges for quantitative power Doppler imaging. Therefore, development of new 

signal processing methods to overcome some of these challenges can enhance the 

usability of power Doppler imaging in quantitative microvascular angiography.  

6.1.1 Chapter 2: Improved objective selection of power Doppler wall-filter 
cut-off velocity for accurate vascular quantification  

An improved (relative to the original method presented in[1]) automatic, objective 

method for the selection of one of the ultrasound operator-depend instrument settings, 

namely, the wall filter cut-off frequency is presented.  The method, called the wall filter 

selection curve (WFSC) method has three key features: first, it automatically identifies 

the cut-off frequency ranges enclosing the optimum cut-off frequency based on the 

characteristics of the imaged vasculature, secondly, using a multi-step decision algorithm, 

the method identifies an operating point within these ranges. Finally, using the first and 

second features, the method performs spatial tuning of the cut-off frequency by selecting 

a cut-off frequency for subregions within a region of interest. Evaluation the WFSC 

method using multiple-vessel flow phantom images demonstrated the improved depiction 
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of blood-mimicking fluid flow with smoother and sharper vessel boundaries in 

comparison to images processed and displayed using typical commercial scanner 

software. Vascular quantification of images processed using the improved WFSC method 

was accurate to within 3% of the vascular volume fraction of the phantom. 

6.1.2 Chapter 3: A new three-component signal model to objectively select 
power Doppler wall filter cut-off velocity for quantitative 
microvascular imaging 

Building on the theoretical basis of the WFSC method presented in Chapter 2 and 

using experimental WFSCs from flow-phantom images, a new signal model describing 

the relationship between wall filter cut-off frequency and the ratio of colored pixels 

displayed in a power Doppler image (color pixel density (CPD)) was developed. The new 

model showed an improved fit to experimental flow-phantom selection curves in 

comparison to the original theoretical model developed in[1]. Monte Carlo simulations of 

different vascular environments by changing the number of vessels and the mean and 

standard deviation of blood and background tissue velocity distributions in conjunction 

with reference values derived using a cost function were used to analyze the performance 

of the WFSC method to automatically select an operating cut-off frequency. These 

simulations were also used to identify conditions necessary for the development of an 

online implementation of the WFSC method including the reliable number of samples on 

a selection curve (100 samples) and the upper limit to fluctuations to CPD within a region 

of interest (5% of reference vascular volume fraction), the length of a reliable 

characteristic interval (longer than 6mm/s) and the threshold for the starting cut-off 

velocity of an interval is set to 3 mm/s. Evaluation of the accuracy of cut-off selection 

using reference values from the cost function supported the satisfactory performance of 

the multi-step decision algorithm for operating cut-off frequency selection developed in 

Chapter 2. This theoretical analysis was necessary to establish the expectation that the 

WFSC method can improve the accuracy and reproducibility of power Doppler for 

quantitative microvascular imaging by adapting the cut-off frequency to spatial and 

temporal variations in blood conditions. 
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6.1.3 Chapter 4: A two-stage process to improve quantitative three-
dimensional power Doppler angiography of tumor 
microvasculature 

A three-dimensional vascular network reconstruction method was developed and 

combined with the improved WFSC method from Chapters 2 and 3 to present a two-stage 

power Doppler processing method targeted at improving the quantitative performance of 

power Doppler angiography. Evaluated using power Doppler images of a murine tumor 

model, the two-stage method showed improved visualization of the vascular network. 

Quantifying vasculature using power Doppler angiography indices (vascularization 

index, flow index and vascularization flow index (VFI)) showed significant variations 

when images processed using the two-stage method were compared to images processed 

using typical, fixed wall filter cut-off frequency without vascular network reconstruction. 

Small improvements in correlation of the power Doppler angiography metric, VFI, with 

contrast-enhanced ultrasound image quantification over typical Doppler-processing 

images were reported. The first in vivo evaluation of the performance of the improved 

WFSC method (Chapter 2) demonstrated the relevance of spatially and temporally 

adjusting the cut-off frequency within a 3-D image as the mean WFSC-selected cut-off 

showed large variation within each 3-D image, and among images acquired at different 

time points across different animals (two-way ANOVA, p < 0.0001). The vascular 

feature responsible for these variations of cut-off frequency selection was identified as 

the ratio between total vascular length and vascular volume. These results suggest that the 

two-stage process has the potential to improve the reliability of visualization and 

quantification of complex, dense vasculature using 3-D power Doppler angiography.  

6.1.4 Chapter 5: Improving microvascular depiction in three-dimensional 
power Doppler ultrasound using a two-stage processing method 

The two-stage method developed in Chapter 4 was evaluated using an in vivo 

model of the chicken embryo chorioallantoic membrane as a vascular depiction 

application of power Doppler imaging. Applying the two-stage method to power Doppler 

signal data improved vessel detection and visualization and resulted in significant image 

artifact reduction in comparison to images processed using a commercial scanner 

software and set up by a licensed sonographer. Vessel diameter measurements from 
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images processed using the two-stage method were more accurate than measurements 

made using raw images exported from the commercial scanner (with a median absolute 

percentage error  = 10.39% versus 28.18% respectively). Further analysis of the types and 

orders of vessels contributing to the overall error showed that higher errors in diameter 

measurements were associated with vessels of lower orders (orders 6 and 7, which have 

diameters of approximately 280 to 550 µm). It was also shown that a diameter 

overestimation bias of approximately 30% was observed for arterial diameter 

measurements using scanner exported images whereas measurement errors from the two-

stage method images were centered at 0%. Thus, the proposed method shows promising 

results for improving vascular quantification, detection and visualization using 3-D 

power Doppler imaging suitable for flow depiction applications.  

 

6.2 Future Work 
The ultimate goal of this project is to have an online implementation of the 

developed methods in a commercial ultrasound scanner. Integrating these methods in 

typical Doppler processing software can provide improved visualization and 

quantification of imaged vasculature using power Doppler imaging while having the 

option of an automatic wall filter cut-off frequency setting, making it possible for non-

specialist or time-sensitive operators, such as the users of portable scanners and 

preclinical scanners to reproducibly acquire diagnostic-quality, quantitatively accurate 

Doppler images. 

There are some future direction paths to take in order to reach this ultimate goal. 

First, to further understand the relationship between properties of the wall filter selection 

curve (WFSC) such as its shape, range, number of detected intervals and the 

corresponding features of the imaged vasculature within a subregion, a study using the 

simple, organized vasculature of the chorioallantoic membrane (CAM) described in 

Chapter 5 can be setup in which WFSCs of subregions enclosing vessels with known 

characteristics (type, order, blood velocity) are analyzed. Having this clear connection 
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between vascular features and properties of the WFSC can help improve the operating 

cut-off selection algorithm to improve the overall performance of the method.  

Another future direction is to work on improving the currently developed methods 

and overcoming some of their limitations. One potential subject for improvement is 

developing two- and three-dimensional smoothing algorithms for the selected cut-off 

frequencies within an image to reduce fluctuations in representations of the different 

sections of the same vessel across multiple frames or subregions.  

Furthermore, developing some supplemental tools to improve the usability of the 

currently developed methods is another step on the way to have an online implementation 

of the method. One example of a supplemental tool is developing vascular network 

analysis software similar to [2] that allows the user to perform diameter measurements or 

estimates of vascular density using the processed images. Using images from the CAM 

vasculature in Chapter 5, this tool is currently being designed in our lab by a summer 

student, which can later be integrated with the previously developed method to compute 

power Doppler angiography metrics presented in Chapter 4.  

Finally, a future project investigating the feasibility of using the wall filter 

selection curve method to automatically select other operator-dependent instrument 

settings such as the pulse repetition frequency (PRF) or the priority settings. A suitable 

value of PRF can possibly be determined from the range of cut-off frequencies that yields 

non-zero color pixel density value indicating the maximum velocity of vasculature within 

a subregion. Similarly, the shape of the WFSC can be used to determine whether some 

pixels correspond to signal from moving blood or from a highly echogenic sold tissue 

which is typically eliminated using the priority setting.  

6.3 Final Remarks 
Three-dimensional power Doppler angiography is actively being pursued as 

reliable vascular quantification and visualization in many clinical applications. As an 

attempt to expand upon current state-of-the art signal processing methods in commercial 

ultrasound scanners, this thesis has pursued the development of power Doppler signal 
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processing methods that provide an automatic, spatially tuned selection of the wall filter 

cut-off frequency setting and apply image post-processing methods to reduce image 

artifacts and improve visualization of three-dimensional vascular networks. Since power 

Doppler imaging is already widely available in commercial ultrasound systems, it is 

hoped that the signal processing methods presented in this thesis can eventually be 

integrated into typical Doppler processing software on existing ultrasound systems. As a 

result, power Doppler imaging users can worry less about operator dependence of the 

wall-filter settings while experiencing the improved visualization and quantification of 

imaged vasculature for their flow depiction or quantification applications.  
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